This article is about the architecture of a lossless wavelet filter bank with reprogrammable logic. It is based on second generation of wavelets with a reduced of number of operations. A new basic structure for parallel architecture and modules to forward and backward integer discrete wavelet transform is proposed.
Neurons in the brain are complex machines with distinct functional compartments that interact nonlinearly. In contrast, neurons in artificial neural networks abstract away this complexity, typically down to a scalar activation function of a weighted sum of inputs. Here we emulate more biologically realistic neurons by learning canonical activation functions with two input arguments, analogous to basal and apical dendrites. We use a network-in-network architecture where each neuron is modeled as a multilayer perceptron with two inputs and a single output. This inner perceptron is shared by all units in the outer network. Remarkably, the resultant nonlinearities often produce soft XOR functions, consistent with recent experimental observations about interactions between inputs in human cortical neurons. When hyperparameters are optimized, networks with these nonlinearities learn faster and perform better than conventional ReLU nonlinearities with matched parameter counts, and they are more robust to natural and adversarial perturbations.
This work concentrates on reducing the RTF and word error rate of a hybrid HMM-DNN. Our baseline system uses an architecture with TDNN and LSTM layers. We find this architecture particularly useful for lightly reverberated environments. However, these models tend to demand more computation than is desirable. In this work, we explore alternate architectures employing singular value decomposition (SVD) is applied to the TDNN layers to reduce the RTF, as well as to the affine transforms of every LSTM cell. We compare this approach with specifying bottleneck layers similar to those introduced by SVD before training. Additionally, we reduced the search space of the decoding graph to make it a better fit to operate in real-time applications. We report -61.57% relative reduction in RTF and almost 1% relative decrease in WER for our architecture trained on Fisher data along with reverberated versions of this dataset in order to match one of our target test distributions.
6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $\sim$ 12% under supervised settings and 7% $\sim$ 13% under semi-supervised settings.
Clustering is a fundamental task in data analysis. Recently, deep clustering, which derives inspiration primarily from deep learning approaches, achieves state-of-the-art performance and has attracted considerable attention. Current deep clustering methods usually boost the clustering results by means of the powerful representation ability of deep learning, e.g., autoencoder, suggesting that learning an effective representation for clustering is a crucial requirement. The strength of deep clustering methods is to extract the useful representations from the data itself, rather than the structure of data, which receives scarce attention in representation learning. Motivated by the great success of Graph Convolutional Network (GCN) in encoding the graph structure, we propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering. Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer, and a dual self-supervised mechanism to unify these two different deep neural architectures and guide the update of the whole model. In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder. Furthermore, we theoretically analyze the delivery operator, i.e., with the delivery operator, GCN improves the autoencoder-specific representation as a high-order graph regularization constraint and autoencoder helps alleviate the over-smoothing problem in GCN. Through comprehensive experiments, we demonstrate that our propose model can consistently perform better over the state-of-the-art techniques.
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.
Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.
Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We propose to solve this task by using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.
The Linear Attention Recurrent Neural Network (LARNN) is a recurrent attention module derived from the Long Short-Term Memory (LSTM) cell and ideas from the consciousness Recurrent Neural Network (RNN). Yes, it LARNNs. The LARNN uses attention on its past cell state values for a limited window size $k$. The formulas are also derived from the Batch Normalized LSTM (BN-LSTM) cell and the Transformer Network for its Multi-Head Attention Mechanism. The Multi-Head Attention Mechanism is used inside the cell such that it can query its own $k$ past values with the attention window. This has the effect of augmenting the rank of the tensor with the attention mechanism, such that the cell can perform complex queries to question its previous inner memories, which should augment the long short-term effect of the memory. With a clever trick, the LARNN cell with attention can be easily used inside a loop on the cell state, just like how any other Recurrent Neural Network (RNN) cell can be looped linearly through time series. This is due to the fact that its state, which is looped upon throughout time steps within time series, stores the inner states in a "first in, first out" queue which contains the $k$ most recent states and on which it is easily possible to add static positional encoding when the queue is represented as a tensor. This neural architecture yields better results than the vanilla LSTM cells. It can obtain results of 91.92% for the test accuracy, compared to the previously attained 91.65% using vanilla LSTM cells. Note that this is not to compare to other research, where up to 93.35% is obtained, but costly using 18 LSTM cells rather than with 2 to 3 cells as analyzed here. Finally, an interesting discovery is made, such that adding activation within the multi-head attention mechanism's linear layers can yield better results in the context researched hereto.