This article provides quasi-optimal a priori error estimates for an optimal control problem constrained by an elliptic obstacle problem where the finite element discretization is carried out using the symmetric interior penalty discontinuous Galerkin method. The main proofs are based on the improved $L^2$-error estimates for the obstacle problem, the discrete maximum principle, and a well-known quadratic growth property. The standard (restrictive) assumptions on mesh are not assumed here.
In order to ease the analysis of error propagation in neuromorphic computing and to get a better understanding of spiking neural networks (SNN), we address the problem of mathematical analysis of SNNs as endomorphisms that map spike trains to spike trains. A central question is the adequate structure for a space of spike trains and its implication for the design of error measurements of SNNs including time delay, threshold deviations, and the design of the reinitialization mode of the leaky-integrate-and-fire (LIF) neuron model. First we identify the underlying topology by analyzing the closure of all sub-threshold signals of a LIF model. For zero leakage this approach yields the Alexiewicz topology, which we adopt to LIF neurons with arbitrary positive leakage. As a result LIF can be understood as spike train quantization in the corresponding norm. This way we obtain various error bounds and inequalities such as a quasi isometry relation between incoming and outgoing spike trains. Another result is a Lipschitz-style global upper bound for the error propagation and a related resonance-type phenomenon.
Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.
High-resolution semantic segmentation requires substantial computational resources. Traditional approaches in the field typically downscale the input images before processing and then upscale the low-resolution outputs back to their original dimensions. While this strategy effectively identifies broad regions, it often misses finer details. In this study, we demonstrate that a streamlined model capable of directly producing high-resolution segmentations can match the performance of more complex systems that generate lower-resolution results. By simplifying the network architecture, we enable the processing of images at their native resolution. Our approach leverages a bottom-up information propagation technique across various scales, which we have empirically shown to enhance segmentation accuracy. We have rigorously tested our method using leading-edge semantic segmentation datasets. Specifically, for the Cityscapes dataset, we further boost accuracy by applying the Noisy Student Training technique.
The perception that the convergence of biological engineering and artificial intelligence (AI) could enable increased biorisk has recently drawn attention to the governance of biotechnology and artificial intelligence. The 2023 Executive Order, Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, requires an assessment of how artificial intelligence can increase biorisk. Within this perspective, we present a simplistic framework for evaluating biorisk and demonstrate how this framework falls short in achieving actionable outcomes for a biorisk manager. We then suggest a potential path forward that builds upon existing risk characterization work and justify why characterization efforts of AI-enabled tools for engineering biology is needed.
Recently, neural networks utilizing periodic activation functions have been proven to demonstrate superior performance in vision tasks compared to traditional ReLU-activated networks. However, there is still a limited understanding of the underlying reasons for this improved performance. In this paper, we aim to address this gap by providing a theoretical understanding of periodically activated networks through an analysis of their Neural Tangent Kernel (NTK). We derive bounds on the minimum eigenvalue of their NTK in the finite width setting, using a fairly general network architecture which requires only one wide layer that grows at least linearly with the number of data samples. Our findings indicate that periodically activated networks are \textit{notably more well-behaved}, from the NTK perspective, than ReLU activated networks. Additionally, we give an application to the memorization capacity of such networks and verify our theoretical predictions empirically. Our study offers a deeper understanding of the properties of periodically activated neural networks and their potential in the field of deep learning.
This study investigates the asymptotic dynamics of alternating minimization applied to optimize a bilinear non-convex function with normally distributed covariates. We employ the replica method from statistical physics in a multi-step approach to precisely trace the algorithm's evolution. Our findings indicate that the dynamics can be described effectively by a two--dimensional discrete stochastic process, where each step depends on all previous time steps, revealing a memory dependency in the procedure. The theoretical framework developed in this work is broadly applicable for the analysis of various iterative algorithms, extending beyond the scope of alternating minimization.
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads, and these insights also provide natural suggestions for alternative architectures.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.