亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Depth separation results propose a possible theoretical explanation for the benefits of deep neural networks over shallower architectures, establishing that the former possess superior approximation capabilities. However, there are no known results in which the deeper architecture leverages this advantage into a provable optimization guarantee. We prove that when the data are generated by a distribution with radial symmetry which satisfies some mild assumptions, gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations, and where the hidden layer is held fixed throughout training. By building on and refining existing techniques for approximation lower bounds of neural networks with a single layer of non-linearities, we show that there are $d$-dimensional radial distributions on the data such that ball indicators cannot be learned efficiently by any algorithm to accuracy better than $\Omega(d^{-4})$, nor by a standard gradient descent implementation to accuracy better than a constant. These results establish what is to the best of our knowledge, the first optimization-based separations where the approximation benefits of the stronger architecture provably manifest in practice. Our proof technique introduces new tools and ideas that may be of independent interest in the theoretical study of both the approximation and optimization of neural networks.

相關內容

Implicit neural representations (INR) have gained increasing attention in representing 3D scenes and images, and have been recently applied to encode videos (e.g., NeRV, E-NeRV). While achieving promising results, existing INR-based methods are limited to encoding a handful of short videos (e.g., seven 5-second videos in the UVG dataset) with redundant visual content, leading to a model design that fits individual video frames independently and is not efficiently scalable to a large number of diverse videos. This paper focuses on developing neural representations for a more practical setup -- encoding long and/or a large number of videos with diverse visual content. We first show that instead of dividing videos into small subsets and encoding them with separate models, encoding long and diverse videos jointly with a unified model achieves better compression results. Based on this observation, we propose D-NeRV, a novel neural representation framework designed to encode diverse videos by (i) decoupling clip-specific visual content from motion information, (ii) introducing temporal reasoning into the implicit neural network, and (iii) employing the task-oriented flow as intermediate output to reduce spatial redundancies. Our new model largely surpasses NeRV and traditional video compression techniques on UCF101 and UVG datasets on the video compression task. Moreover, when used as an efficient data-loader, D-NeRV achieves 3%-10% higher accuracy than NeRV on action recognition tasks on the UCF101 dataset under the same compression ratios.

Backpropagation algorithm has been widely used as a mainstream learning procedure for neural networks in the past decade, and has played a significant role in the development of deep learning. However, there exist some limitations associated with this algorithm, such as getting stuck in local minima and experiencing vanishing/exploding gradients, which have led to questions about its biological plausibility. To address these limitations, alternative algorithms to backpropagation have been preliminarily explored, with the Forward-Forward (FF) algorithm being one of the most well-known. In this paper we propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF. Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples and thus leads to a more efficient process at both training and testing. Moreover, in our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems. The proposed method is evaluated on four public image classification benchmarks, and the experimental results illustrate significant improvement in prediction accuracy in comparison with the baseline.

To facilitate widespread adoption of automated engineering design techniques, existing methods must become more efficient and generalizable. In the field of topology optimization, this requires the coupling of modern optimization methods with solvers capable of handling arbitrary problems. In this work, a topology optimization method for general multiphysics problems is presented. We leverage a convolutional neural parameterization of a level set for a description of the geometry and use this in an unfitted finite element method that is differentiable with respect to the level set everywhere in the domain. We construct the parameter to objective map in such a way that the gradient can be computed entirely by automatic differentiation at roughly the cost of an objective function evaluation. The method produces optimized topologies that are similar in performance yet exhibit greater regularity than baseline approaches on standard benchmarks whilst having the ability to solve a more general class of problems, e.g., interface-coupled multiphysics.

We investigate the convergence and convergence rate of stochastic training algorithms for Neural Networks (NNs) that have been inspired by Dropout (Hinton et al., 2012). With the goal of avoiding overfitting during training of NNs, dropout algorithms consist in practice of multiplying the weight matrices of a NN componentwise by independently drawn random matrices with $\{0, 1 \}$-valued entries during each iteration of Stochastic Gradient Descent (SGD). This paper presents a probability theoretical proof that for fully-connected NNs with differentiable, polynomially bounded activation functions, if we project the weights onto a compact set when using a dropout algorithm, then the weights of the NN converge to a unique stationary point of a projected system of Ordinary Differential Equations (ODEs). After this general convergence guarantee, we go on to investigate the convergence rate of dropout. Firstly, we obtain generic sample complexity bounds for finding $\epsilon$-stationary points of smooth nonconvex functions using SGD with dropout that explicitly depend on the dropout probability. Secondly, we obtain an upper bound on the rate of convergence of Gradient Descent (GD) on the limiting ODEs of dropout algorithms for NNs with the shape of arborescences of arbitrary depth and with linear activation functions. The latter bound shows that for an algorithm such as Dropout or Dropconnect (Wan et al., 2013), the convergence rate can be impaired exponentially by the depth of the arborescence. In contrast, we experimentally observe no such dependence for wide NNs with just a few dropout layers. We also provide a heuristic argument for this observation. Our results suggest that there is a change of scale of the effect of the dropout probability in the convergence rate that depends on the relative size of the width of the NN compared to its depth.

With the feature size continuously shrinking in advanced technology nodes, mask optimization is increasingly crucial in the conventional design flow, accompanied by an explosive growth in prohibitive computational overhead in optical proximity correction (OPC) methods. Recently, inverse lithography technique (ILT) has drawn significant attention and is becoming prevalent in emerging OPC solutions. However, ILT methods are either time-consuming or in weak performance of mask printability and manufacturability. In this paper, we present DevelSet, a GPU and deep neural network (DNN) accelerated level set OPC framework for metal layer. We first improve the conventional level set-based ILT algorithm by introducing the curvature term to reduce mask complexity and applying GPU acceleration to overcome computational bottlenecks. To further enhance printability and fast iterative convergence, we propose a novel deep neural network delicately designed with level set intrinsic principles to facilitate the joint optimization of DNN and GPU accelerated level set optimizer. Experimental results show that DevelSet framework surpasses the state-of-the-art methods in printability and boost the runtime performance achieving instant level (around 1 second).

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司