In this paper, we validate the performance of the a sensor fusion-based Global Navigation Satellite System (GNSS) spoofing attack detection framework for Autonomous Vehicles (AVs). To collect data, a vehicle equipped with a GNSS receiver, along with Inertial Measurement Unit (IMU) is used. The detection framework incorporates two strategies: The first strategy involves comparing the predicted location shift, which is the distance traveled between two consecutive timestamps, with the inertial sensor-based location shift. For this purpose, data from low-cost in-vehicle inertial sensors such as the accelerometer and gyroscope sensor are fused and fed into a long short-term memory (LSTM) neural network. The second strategy employs a Random-Forest supervised machine learning model to detect and classify turns, distinguishing between left and right turns using the output from the steering angle sensor. In experiments, two types of spoofing attack models: turn-by-turn and wrong turn are simulated. These spoofing attacks are modeled as SQL injection attacks, where, upon successful implementation, the navigation system perceives injected spoofed location information as legitimate while being unable to detect legitimate GNSS signals. Importantly, the IMU data remains uncompromised throughout the spoofing attack. To test the effectiveness of the detection framework, experiments are conducted in Tuscaloosa, AL, mimicking urban road structures. The results demonstrate the framework's ability to detect various sophisticated GNSS spoofing attacks, even including slow position drifting attacks. Overall, the experimental results showcase the robustness and efficacy of the sensor fusion-based spoofing attack detection approach in safeguarding AVs against GNSS spoofing threats.
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of $n^{O(\frac{k^2}{\varepsilon})}$ on graphs of treewidth $k$. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of $2^{O(\frac{k^2}{\varepsilon} \log \frac{k^2}{\varepsilon})} \cdot n^{O(1)}$. If $k$ instead is the vertex cover number of the input graph, we show how to compute the optimum solution in $2^{O(k \log k)} \cdot n^{O(1)}$ time, and we also prove that this runtime dependence on $k$ is asymptotically best possible, under ETH. Furthermore, if $k$ is the size of a feedback edge set, then we obtain a faster $2^{O(k)} \cdot n^{O(1)}$ time algorithm, which again cannot be improved under ETH.
In this paper we present a new gap-creating randomized self-reduction for parameterized Maximum Likelihood Decoding problem over $\mathbb{F}_p$ ($k$-MLD$_p$). The reduction takes a $k$-MLD$_p$ instance with $k\cdot n$ vectors as input, runs in time $f(k)n^{O(1)}$ for some computable function $f$, outputs a $(3/2-\varepsilon)$-Gap-$k'$-MLD$_p$ instance for any $\varepsilon>0$, where $k'=O(k^2\log k)$. Using this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no algorithms can approximate $k$-MLD$_p$ (and therefore its dual problem $k$-NCP$_p$) within factor $(3/2-\varepsilon)$ in $f(k)\cdot n^{o(\sqrt{k/\log k})}$ time for any $\varepsilon>0$. We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to amplify the $(3/2-\varepsilon)$-gap to any constant. As a result, we show that assuming ETH, no algorithms can approximate $k$-NCP$_p$ and $k$-MDP$_p$ within $\gamma$-factor in $f(k)n^{o(k^{\varepsilon_\gamma})}$ time for some constant $\varepsilon_\gamma>0$. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and Ribeiro (STOC 2023), we also obtain similar lower bounds for $k$-MDP$_p$, $k$-CVP$_p$ and $k$-SVP$_p$. These results improve upon the previous $f(k)n^{\Omega(\mathsf{poly} \log k)}$ lower bounds for these problems under ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).
In this paper, we propose a new deinterleaving method for mixtures of discrete renewal Markov chains. This method relies on the maximization of a penalized likelihood score. It exploits all available information about both the sequence of the different symbols and their arrival times. A theoretical analysis is carried out to prove that minimizing this score allows to recover the true partition of symbols in the large sample limit, under mild conditions on the component processes. This theoretical analysis is then validated by experiments on synthetic data. Finally, the method is applied to deinterleave pulse trains received from different emitters in a RESM (Radar Electronic Support Measurements) context and we show that the proposed method competes favorably with state-of-the-art methods on simulated warfare datasets.
In this paper, we present a novel framework for enhancing the performance of Quanvolutional Neural Networks (QuNNs) by introducing trainable quanvolutional layers and addressing the critical challenges associated with them. Traditional quanvolutional layers, although beneficial for feature extraction, have largely been static, offering limited adaptability. Unlike state-of-the-art, our research overcomes this limitation by enabling training within these layers, significantly increasing the flexibility and potential of QuNNs. However, the introduction of multiple trainable quanvolutional layers induces complexities in gradient-based optimization, primarily due to the difficulty in accessing gradients across these layers. To resolve this, we propose a novel architecture, Residual Quanvolutional Neural Networks (ResQuNNs), leveraging the concept of residual learning, which facilitates the flow of gradients by adding skip connections between layers. By inserting residual blocks between quanvolutional layers, we ensure enhanced gradient access throughout the network, leading to improved training performance. Moreover, we provide empirical evidence on the strategic placement of these residual blocks within QuNNs. Through extensive experimentation, we identify an efficient configuration of residual blocks, which enables gradients across all the layers in the network that eventually results in efficient training. Our findings suggest that the precise location of residual blocks plays a crucial role in maximizing the performance gains in QuNNs. Our results mark a substantial step forward in the evolution of quantum deep learning, offering new avenues for both theoretical development and practical quantum computing applications.
This paper reports our work on building up a Cantonese Speech-to-Text (STT) system with a syllable based acoustic model. This is a part of an effort in building a STT system to aid dyslexic students who have cognitive deficiency in writing skills but have no problem expressing their ideas through speech. For Cantonese speech recognition, the basic unit of acoustic models can either be the conventional Initial-Final (IF) syllables, or the Onset-Nucleus-Coda (ONC) syllables where finals are further split into nucleus and coda to reflect the intra-syllable variations in Cantonese. By using the Kaldi toolkit, our system is trained using the stochastic gradient descent optimization model with the aid of GPUs for the hybrid Deep Neural Network and Hidden Markov Model (DNN-HMM) with and without I-vector based speaker adaptive training technique. The input features of the same Gaussian Mixture Model with speaker adaptive training (GMM-SAT) to DNN are used in all cases. Experiments show that the ONC-based syllable acoustic modeling with I-vector based DNN-HMM achieves the best performance with the word error rate (WER) of 9.66% and the real time factor (RTF) of 1.38812.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.