This paper reports our work on building up a Cantonese Speech-to-Text (STT) system with a syllable based acoustic model. This is a part of an effort in building a STT system to aid dyslexic students who have cognitive deficiency in writing skills but have no problem expressing their ideas through speech. For Cantonese speech recognition, the basic unit of acoustic models can either be the conventional Initial-Final (IF) syllables, or the Onset-Nucleus-Coda (ONC) syllables where finals are further split into nucleus and coda to reflect the intra-syllable variations in Cantonese. By using the Kaldi toolkit, our system is trained using the stochastic gradient descent optimization model with the aid of GPUs for the hybrid Deep Neural Network and Hidden Markov Model (DNN-HMM) with and without I-vector based speaker adaptive training technique. The input features of the same Gaussian Mixture Model with speaker adaptive training (GMM-SAT) to DNN are used in all cases. Experiments show that the ONC-based syllable acoustic modeling with I-vector based DNN-HMM achieves the best performance with the word error rate (WER) of 9.66% and the real time factor (RTF) of 1.38812.
Visual Relationship Detection (VRD) has seen significant advancements with Transformer-based architectures recently. However, we identify two key limitations in a conventional label assignment for training Transformer-based VRD models, which is a process of mapping a ground-truth (GT) to a prediction. Under the conventional assignment, an unspecialized query is trained since a query is expected to detect every relation, which makes it difficult for a query to specialize in specific relations. Furthermore, a query is also insufficiently trained since a GT is assigned only to a single prediction, therefore near-correct or even correct predictions are suppressed by being assigned no relation as a GT. To address these issues, we propose Groupwise Query Specialization and Quality-Aware Multi-Assignment (SpeaQ). Groupwise Query Specialization trains a specialized query by dividing queries and relations into disjoint groups and directing a query in a specific query group solely toward relations in the corresponding relation group. Quality-Aware Multi-Assignment further facilitates the training by assigning a GT to multiple predictions that are significantly close to a GT in terms of a subject, an object, and the relation in between. Experimental results and analyses show that SpeaQ effectively trains specialized queries, which better utilize the capacity of a model, resulting in consistent performance gains with zero additional inference cost across multiple VRD models and benchmarks. Code is available at //github.com/mlvlab/SpeaQ.
Reinforcement Learning (RL)-based recommender systems have demonstrated promising performance in meeting user expectations by learning to make accurate next-item recommendations from historical user-item interactions. However, existing offline RL-based sequential recommendation methods face the challenge of obtaining effective user feedback from the environment. Effectively modeling the user state and shaping an appropriate reward for recommendation remains a challenge. In this paper, we leverage language understanding capabilities and adapt large language models (LLMs) as an environment (LE) to enhance RL-based recommenders. The LE is learned from a subset of user-item interaction data, thus reducing the need for large training data, and can synthesise user feedback for offline data by: (i) acting as a state model that produces high quality states that enrich the user representation, and (ii) functioning as a reward model to accurately capture nuanced user preferences on actions. Moreover, the LE allows to generate positive actions that augment the limited offline training data. We propose a LE Augmentation (LEA) method to further improve recommendation performance by optimising jointly the supervised component and the RL policy, using the augmented actions and historical user signals. We use LEA, the state and reward models in conjunction with state-of-the-art RL recommenders and report experimental results on two publicly available datasets.
This paper proposes LONER, the first real-time LiDAR SLAM algorithm that uses a neural implicit scene representation. Existing implicit mapping methods for LiDAR show promising results in large-scale reconstruction, but either require groundtruth poses or run slower than real-time. In contrast, LONER uses LiDAR data to train an MLP to estimate a dense map in real-time, while simultaneously estimating the trajectory of the sensor. To achieve real-time performance, this paper proposes a novel information-theoretic loss function that accounts for the fact that different regions of the map may be learned to varying degrees throughout online training. The proposed method is evaluated qualitatively and quantitatively on two open-source datasets. This evaluation illustrates that the proposed loss function converges faster and leads to more accurate geometry reconstruction than other loss functions used in depth-supervised neural implicit frameworks. Finally, this paper shows that LONER estimates trajectories competitively with state-of-the-art LiDAR SLAM methods, while also producing dense maps competitive with existing real-time implicit mapping methods that use groundtruth poses.
Software process models play a pivotal role in fostering collaboration and communication within software teams, enabling them to tackle intricate development tasks effectively. This paper introduces LCG, a code generation framework inspired by established software engineering practices. LCG leverages multiple Large Language Model (LLM) agents to emulate various software process models, namely LCGWaterfall, LCGTDD, and LCGScrum. Each model assigns LLM agents specific roles such as requirement engineer, architect, developer, tester, and scrum master, mirroring typical development activities and communication patterns. Through collaborative efforts utilizing chain-of-thought and prompt composition techniques, the agents continuously refine themselves to enhance code quality. Utilizing GPT3.5 as the underlying LLM and baseline (GPT), we evaluate LCG across four code generation benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET. Results indicate LCGScrum outperforms other models, achieving Pass@1 scores of 75.2, 65.5, 82.5, and 56.7 in HumanEval, HumanEval-ET, MBPP, and MBPP-ET, respectively - an average 15% improvement over GPT. Analysis reveals distinct impacts of development activities on generated code, with design and code reviews contributing to enhanced exception handling, while design, testing, and code reviews mitigate code smells. Furthermore, temperature values exhibit negligible influence on Pass@1 across all models. However, variations in Pass@1 are notable for different GPT3.5 model versions, ranging from 5 to over 60 in HumanEval, highlighting the stability of LCG across model versions. This stability underscores the importance of adopting software process models to bolster the quality and consistency of LLM-generated code.
Synthesising appropriate choreographies from music remains an open problem. We introduce MDLT, a novel approach that frames the choreography generation problem as a translation task. Our method leverages an existing data set to learn to translate sequences of audio into corresponding dance poses. We present two variants of MDLT: one utilising the Transformer architecture and the other employing the Mamba architecture. We train our method on AIST++ and PhantomDance data sets to teach a robotic arm to dance, but our method can be applied to a full humanoid robot. Evaluation metrics, including Average Joint Error and Frechet Inception Distance, consistently demonstrate that, when given a piece of music, MDLT excels at producing realistic and high-quality choreography. The code can be found at github.com/meowatthemoon/MDLT.
This paper presents a formation control approach for contactless gesture-based Human-Swarm Interaction (HSI) between a team of multi-rotor Unmanned Aerial Vehicles (UAVs) and a human worker. The approach is intended for monitoring the safety of human workers, especially those working at heights. In the proposed dynamic formation scheme, one UAV acts as the leader of the formation and is equipped with sensors for human worker detection and gesture recognition. The follower UAVs maintain a predetermined formation relative to the worker's position, thereby providing additional perspectives of the monitored scene. Hand gestures allow the human worker to specify movements and action commands for the UAV team and initiate other mission-related commands without the need for an additional communication channel or specific markers. Together with a novel unified human detection and tracking algorithm, human pose estimation approach and gesture detection pipeline, the proposed approach forms a first instance of an HSI system incorporating all these modules onboard real-world UAVs. Simulations and field experiments with three UAVs and a human worker in a mock-up scenario showcase the effectiveness and responsiveness of the proposed approach.
In this paper, we propose Image Downscaling Assessment by Rate-Distortion (IDA-RD), a novel measure to quantitatively evaluate image downscaling algorithms. In contrast to image-based methods that measure the quality of downscaled images, ours is process-based that draws ideas from rate-distortion theory to measure the distortion incurred during downscaling. Our main idea is that downscaling and super-resolution (SR) can be viewed as the encoding and decoding processes in the rate-distortion model, respectively, and that a downscaling algorithm that preserves more details in the resulting low-resolution (LR) images should lead to less distorted high-resolution (HR) images in SR. In other words, the distortion should increase as the downscaling algorithm deteriorates. However, it is non-trivial to measure this distortion as it requires the SR algorithm to be blind and stochastic. Our key insight is that such requirements can be met by recent SR algorithms based on deep generative models that can find all matching HR images for a given LR image on their learned image manifolds. Extensive experimental results show the effectiveness of our IDA-RD measure.
This paper presents an innovative end-to-end workflow for mineral exploration, integrating ambient noise tomography (ANT) and artificial intelligence (AI) to enhance the discovery and delineation of mineral resources essential for the global transition to a low carbon economy. We focus on copper as a critical element, required in significant quantities for renewable energy solutions. We show the benefits of utilising ANT, characterised by its speed, scalability, depth penetration, resolution, and low environmental impact, alongside artificial intelligence (AI) techniques to refine a continent-scale prospectivity model at the deposit scale by fine-tuning our model on local high-resolution data. We show the promise of the method by first presenting a new data-driven AI prospectivity model for copper within Australia, which serves as our foundation model for further fine-tuning. We then focus on the Hillside IOCG deposit on the prospective Yorke Peninsula. We show that with relatively few local training samples (orebody intercepts), we can fine tune the foundation model to provide a good estimate of the Hillside orebody outline. Our methodology demonstrates how AI can augment geophysical data interpretation, providing a novel approach to mineral exploration with improved decision-making capabilities for targeting mineralization, thereby addressing the urgent need for increased mineral resource discovery.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.