亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we proposed a novel and general method to construct tight frames on graphs with compact supports based on a series of hierarchical partitions. Starting from our abstract construction that generalizes previous methods based on partition trees, we are able to flexibly incorporate subgraph Laplacians into our design of graph frames. Consequently, our general methods permit adjusting the (subgraph) vanishing moments of the framelets and extra properties, such as directionality, for efficiently representing graph signals with path-like supports. Several variants are explicitly defined and tested. Experimental results show our proposed graph frames perform superiorly in non-linear approximation tasks.

相關內容

In this paper, we present a Java-to-Python (J2P) and Python-to-Java (P2J) back-to-back code translation method, and an associated tool called CoTran, based on large language models (LLMs). Our method leverages the attention mechanism of LLMs, compilation, and symbolic execution-based test generation for equivalence testing between the input and output programs. More precisely, we modify the typical LLM training loop to incorporate compiler and symbolic execution loss. Via extensive experiments comparing CoTran with 12 other transpilers and LLM-based translation tools over a benchmark of more than 57,000 Java-Python equivalent pairs, we show that CoTran outperforms them on relevant metrics such as compilation and runtime equivalence accuracy. For example, our tool gets 97.43% compilation accuracy and 49.66% runtime equivalence accuracy for J2P translation, whereas the nearest competing tool only gets 92.84% and 40.95% respectively.

Topological maps are favorable for their small storage compared to geometric map. However, they are limited in relocalization and path planning capabilities. To solve this problem, a feature-based hierarchical topological map (FHT-Map) is proposed along with a real-time map construction algorithm for robot exploration. Specifically, the FHT-Map utilizes both RGB cameras and LiDAR information and consists of two types of nodes: main node and support node. Main nodes will store visual information compressed by convolutional neural network and local laser scan data to enhance subsequent relocalization capability. Support nodes retain a minimal amount of data to ensure storage efficiency while facilitating path planning. After map construction with robot exploration, the FHT-Map can be used by other robots for relocalization and path planning. Experiments are conducted in Gazebo simulator, and the results demonstrate that the proposed FHT-Map can effectively improve relocalization and path planning capability compared with other topological maps. Moreover, experiments on hierarchical architecture are implemented to show the necessity of two types of nodes.

In this work, we propose a methodology for investigating the use of semantic attention to enhance the explainability of Graph Neural Network (GNN)-based models. Graph Deep Learning (GDL) has emerged as a promising field for tasks like scene interpretation, leveraging flexible graph structures to concisely describe complex features and relationships. As traditional explainability methods used in eXplainable AI (XAI) cannot be directly applied to such structures, graph-specific approaches are introduced. Attention has been previously employed to estimate the importance of input features in GDL, however, the fidelity of this method in generating accurate and consistent explanations has been questioned. To evaluate the validity of using attention weights as feature importance indicators, we introduce semantically-informed perturbations and correlate predicted attention weights with the accuracy of the model. Our work extends existing attention-based graph explainability methods by analysing the divergence in the attention distributions in relation to semantically sorted feature sets and the behaviour of a GNN model, efficiently estimating feature importance. We apply our methodology on a lidar pointcloud estimation model successfully identifying key semantic classes that contribute to enhanced performance, effectively generating reliable post-hoc semantic explanations.

Simultaneous localization and mapping, as a fundamental task in computer vision, has gained higher demands for performance in recent years due to the rapid development of autonomous driving and unmanned aerial vehicles. Traditional SLAM algorithms highly rely on basic geometry features such as points and lines, which are susceptible to environment. Conversely, higher-level object features offer richer information that is crucial for enhancing the overall performance of the framework. However, the effective utilization of object features necessitates careful consideration of various challenges, including complexity and process velocity. Given the advantages and disadvantages of both high-level object feature and low-level geometry features, it becomes essential to make informed choices within the SLAM framework. Taking these factors into account, this paper provides a thorough comparison between geometry features and object features, analyzes the current mainstream application methods of object features in SLAM frameworks, and presents a comprehensive overview of the main challenges involved in object-based SLAM.

In this paper, we study two well known methods of Ising structure learning, namely the pseudolikelihood approach and the interaction screening approach, in the context of tensor recovery in $k$-spin Ising models. We show that both these approaches, with proper regularization, retrieve the underlying hypernetwork structure using a sample size logarithmic in the number of network nodes, and exponential in the maximum interaction strength and maximum node-degree. We also track down the exact dependence of the rate of tensor recovery on the interaction order $k$, that is allowed to grow with the number of samples and nodes, for both the approaches. Finally, we provide a comparative discussion of the performance of the two approaches based on simulation studies, which also demonstrate the exponential dependence of the tensor recovery rate on the maximum coupling strength.

In this work, we tackle the scenario of understanding characters in scripts, which aims to learn the characters' personalities and identities from their utterances. We begin by analyzing several challenges in this scenario, and then propose a multi-level contrastive learning framework to capture characters' global information in a fine-grained manner. To validate the proposed framework, we conduct extensive experiments on three character understanding sub-tasks by comparing with strong pre-trained language models, including SpanBERT, Longformer, BigBird and ChatGPT-3.5. Experimental results demonstrate that our method improves the performances by a considerable margin. Through further in-depth analysis, we show the effectiveness of our method in addressing the challenges and provide more hints on the scenario of character understanding. We will open-source our work on github at //github.com/David-Li0406/Script-based-Character-Understanding.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司