亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inverted landing is a routine behavior among a number of animal fliers. However, mastering this feat poses a considerable challenge for robotic fliers, especially to perform dynamic perching with rapid body rotations (or flips) and landing against gravity. Inverted landing in flies have suggested that optical flow senses are closely linked to the precise triggering and control of body flips that lead to a variety of successful landing behaviors. Building upon this knowledge, we aimed to replicate the flies' landing behaviors in small quadcopters by developing a control policy general to arbitrary ceiling-approach conditions. First, we employed reinforcement learning in simulation to optimize discrete sensory-motor pairs across a broad spectrum of ceiling-approach velocities and directions. Next, we converted the sensory-motor pairs to a two-stage control policy in a continuous augmented-optical flow space. The control policy consists of a first-stage Flip-Trigger Policy, which employs a one-class support vector machine, and a second-stage Flip-Action Policy, implemented as a feed-forward neural network. To transfer the inverted-landing policy to physical systems, we utilized domain randomization and system identification techniques for a zero-shot sim-to-real transfer. As a result, we successfully achieved a range of robust inverted-landing behaviors in small quadcopters, emulating those observed in flies.

相關內容

Large motion poses a critical challenge in Video Frame Interpolation (VFI) task. Existing methods are often constrained by limited receptive fields, resulting in sub-optimal performance when handling scenarios with large motion. In this paper, we introduce a new pipeline for VFI, which can effectively integrate global-level information to alleviate issues associated with large motion. Specifically, we first estimate a pair of initial intermediate flows using a high-resolution feature map for extracting local details. Then, we incorporate a sparse global matching branch to compensate for flow estimation, which consists of identifying flaws in initial flows and generating sparse flow compensation with a global receptive field. Finally, we adaptively merge the initial flow estimation with global flow compensation, yielding a more accurate intermediate flow. To evaluate the effectiveness of our method in handling large motion, we carefully curate a more challenging subset from commonly used benchmarks. Our method demonstrates the state-of-the-art performance on these VFI subsets with large motion.

Despite the superb performance in many tasks, large language models (LLMs) bear the risk of generating hallucination or even wrong answers when confronted with tasks that demand the accuracy of knowledge. The issue becomes even more noticeable when addressing logic queries that require multiple logic reasoning steps. On the other hand, knowledge graph (KG) based question answering methods are capable of accurately identifying the correct answers with the help of knowledge graph, yet its accuracy could quickly deteriorate when the knowledge graph itself is sparse and incomplete. It remains a critical challenge on how to integrate knowledge graph reasoning with LLMs in a mutually beneficial way so as to mitigate both the hallucination problem of LLMs as well as the incompleteness issue of knowledge graphs. In this paper, we propose 'Logic-Query-of-Thoughts' (LGOT) which is the first of its kind to combine LLMs with knowledge graph based logic query reasoning. LGOT seamlessly combines knowledge graph reasoning and LLMs, effectively breaking down complex logic queries into easy to answer subquestions. Through the utilization of both knowledge graph reasoning and LLMs, it successfully derives answers for each subquestion. By aggregating these results and selecting the highest quality candidate answers for each step, LGOT achieves accurate results to complex questions. Our experimental findings demonstrate substantial performance enhancements, with up to 20% improvement over ChatGPT.

Inferential models have been proposed for valid and efficient prior-free probabilistic inference. As it gradually gained popularity, this theory is subject to further developments for practically challenging problems. This paper considers the many-normal-means problem with the means constrained to be in the neighborhood of each other, formally represented by a H\"older space. A new method, called partial conditioning, is proposed to generate valid and efficient marginal inference about the individual means. It is shown that the method outperforms both a fiducial-counterpart in terms of validity and a conservative-counterpart in terms of efficiency. We conclude the paper by remarking that a general theory of partial conditioning for inferential models deserves future development.

Federated Learning (FL) has emerged as a pivotal paradigm within distributed model training, facilitating collaboration among multiple devices to refine a shared model, harnessing their respective datasets as orchestrated by a central server, while ensuring the localization of private data. Nonetheless, the non-independent-and-identically-distributed (Non-IID) data generated on heterogeneous clients and the incessant information exchange among participants may markedly impede training efficacy and retard the convergence rate. In this paper, we refine the conventional stochastic gradient descent (SGD) methodology by introducing aggregated gradients at each local training epoch and propose an adaptive learning rate iterative algorithm that concerns the divergence between local and average parameters. To surmount the obstacle that acquiring other clients' local information, we introduce the mean-field approach by leveraging two mean-field terms to approximately estimate the average local parameters and gradients over time in a manner that precludes the need for local information exchange among clients and design the decentralized adaptive learning rate for each client. Through meticulous theoretical analysis, we provide a robust convergence guarantee for our proposed algorithm and ensure its wide applicability. Our numerical experiments substantiate the superiority of our framework in comparison with existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID data distributions.

The choice of hyperparameters greatly impacts performance in natural language processing. Often, it is hard to tell if a method is better than another or just better tuned. Tuning curves fix this ambiguity by accounting for tuning effort. Specifically, they plot validation performance as a function of the number of hyperparameter choices tried so far. While several estimators exist for these curves, it is common to use point estimates, which we show fail silently and give contradictory results when given too little data. Beyond point estimates, confidence bands are necessary to rigorously establish the relationship between different approaches. We present the first method to construct valid confidence bands for tuning curves. The bands are exact, simultaneous, and distribution-free, thus they provide a robust basis for comparing methods. Empirical analysis shows that while bootstrap confidence bands, which serve as a baseline, fail to approximate their target confidence, ours achieve it exactly. We validate our design with ablations, analyze the effect of sample size, and provide guidance on comparing models with our method. To promote confident comparisons in future work, we release opda: an easy-to-use library that you can install with pip. //github.com/nicholaslourie/opda

As an important pillar of underwater intelligence, Marine Animal Segmentation (MAS) involves segmenting animals within marine environments. Previous methods don't excel in extracting long-range contextual features and overlook the connectivity between discrete pixels. Recently, Segment Anything Model (SAM) offers a universal framework for general segmentation tasks. Unfortunately, trained with natural images, SAM does not obtain the prior knowledge from marine images. In addition, the single-position prompt of SAM is very insufficient for prior guidance. To address these issues, we propose a novel feature learning framework, named Dual-SAM for high-performance MAS. To this end, we first introduce a dual structure with SAM's paradigm to enhance feature learning of marine images. Then, we propose a Multi-level Coupled Prompt (MCP) strategy to instruct comprehensive underwater prior information, and enhance the multi-level features of SAM's encoder with adapters. Subsequently, we design a Dilated Fusion Attention Module (DFAM) to progressively integrate multi-level features from SAM's encoder. Finally, instead of directly predicting the masks of marine animals, we propose a Criss-Cross Connectivity Prediction (C$^3$P) paradigm to capture the inter-connectivity between discrete pixels. With dual decoders, it generates pseudo-labels and achieves mutual supervision for complementary feature representations, resulting in considerable improvements over previous techniques. Extensive experiments verify that our proposed method achieves state-of-the-art performances on five widely-used MAS datasets. The code is available at //github.com/Drchip61/Dual_SAM.

Our hands serve as a fundamental means of interaction with the world around us. Therefore, understanding hand poses and interaction context is critical for human-computer interaction. We present EchoWrist, a low-power wristband that continuously estimates 3D hand pose and recognizes hand-object interactions using active acoustic sensing. EchoWrist is equipped with two speakers emitting inaudible sound waves toward the hand. These sound waves interact with the hand and its surroundings through reflections and diffractions, carrying rich information about the hand's shape and the objects it interacts with. The information captured by the two microphones goes through a deep learning inference system that recovers hand poses and identifies various everyday hand activities. Results from the two 12-participant user studies show that EchoWrist is effective and efficient at tracking 3D hand poses and recognizing hand-object interactions. Operating at 57.9mW, EchoWrist is able to continuously reconstruct 20 3D hand joints with MJEDE of 4.81mm and recognize 12 naturalistic hand-object interactions with 97.6% accuracy.

Imitation Learning (IL), also referred to as Learning from Demonstration (LfD), holds significant promise for capturing expert motor skills through efficient imitation, facilitating adept navigation of complex scenarios. A persistent challenge in IL lies in extending generalization from historical demonstrations, enabling the acquisition of new skills without re-teaching. Dynamical system-based IL (DSIL) emerges as a significant subset of IL methodologies, offering the ability to learn trajectories via movement primitives and policy learning based on experiential abstraction. This paper emphasizes the fusion of theoretical paradigms, integrating control theory principles inherent in dynamical systems into IL. This integration notably enhances robustness, adaptability, and convergence in the face of novel scenarios. This survey aims to present a comprehensive overview of DSIL methods, spanning from classical approaches to recent advanced approaches. We categorize DSIL into autonomous dynamical systems and non-autonomous dynamical systems, surveying traditional IL methods with low-dimensional input and advanced deep IL methods with high-dimensional input. Additionally, we present and analyze three main stability methods for IL: Lyapunov stability, contraction theory, and diffeomorphism mapping. Our exploration also extends to popular policy improvement methods for DSIL, encompassing reinforcement learning, deep reinforcement learning, and evolutionary strategies.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司