亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work is concerned with approximating a trivariate function defined on a tensor-product domain via function evaluations. Combining tensorized Chebyshev interpolation with a Tucker decomposition of low multilinear rank yields function approximations that can be computed and stored very efficiently. The existing Chebfun3 algorithm [Hashemi and Trefethen, SIAM J. Sci. Comput., 39 (2017)]uses a similar format but the construction of the approximation proceeds indirectly, via a so called slice-Tucker decomposition. As a consequence, Chebfun3 sometimes uses unnecessarily many function evaluations and does not fully benefit from the potential of the Tucker decomposition to reduce, sometimes dramatically, the computational cost. We propose a novel algorithm Chebfun3F that utilizes univariate fibers instead of bivariate slices to construct the Tucker decomposition. Chebfun3F reduces the cost for the approximation in terms of the number of function evaluations for nearly all functions considered, typically by 75%, and sometimes by over 98%.

相關內容

The biconjugate gradient method (BiCG) is one of the most popular short-term recurrence methods for solving non-symmetric linear systems of equations. The objective of this paper is to provide an efficient adaption of BiCG to parameterized linear systems. More precisely, we consider the problem of approximating the solution to $A(\mu) x(\mu) = b$ for many different values of the parameter $\mu$. Here we assume $A(\mu)$ is large, sparse, and nonsingular with a nonlinear dependence on $\mu$. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of $A(\mu)$ on the interval $[-a,a]$, $a \in \mathbb{R}$. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to $x(\mu)$ for many different values of the parameter $\mu \in [-a,a]$ simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the same preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible.

Non-additive measures, also known as fuzzy measures, capacities, and monotonic games, are increasingly used in different fields. Applications have been built within computer science and artificial intelligence related to e.g. decision making, image processing, machine learning for both classification, and regression. Tools for measure identification have been built. In short, as non-additive measures are more general than additive ones (i.e., than probabilities), they have better modeling capabilities allowing to model situations and problems that cannot be modeled by the latter. See e.g. the application of non-additive measures and the Choquet integral to model both Ellsberg paradox and Allais paradox. Because of that, there is an increasing need to analyze non-additive measures. The need for distances and similarities to compare them is no exception. Some work has been done for defining $f$-divergence for them. In this work we tackle the problem of defining the optimal transport problem for non-additive measures. Distances for pairs of probability distributions based on the optimal transport are extremely used in practical applications, and they are being studied extensively for their mathematical properties. We consider that it is necessary to provide appropriate definitions with a similar flavour, and that generalize the standard ones, for non-additive measures. We provide definitions based on the M\"obius transform, but also based on the $(\max, +)$-transform that we consider that has some advantages. We will discuss in this paper the problems that arise to define the transport problem for non-additive measures, and discuss ways to solve them. In this paper we provide the definitions of the optimal transport problem, and prove some properties.

Gradient-based first-order convex optimization algorithms find widespread applicability in a variety of domains, including machine learning tasks. Motivated by the recent advances in fixed-time stability theory of continuous-time dynamical systems, we introduce a generalized framework for designing accelerated optimization algorithms with strongest convergence guarantees that further extend to a subclass of non-convex functions. In particular, we introduce the \emph{GenFlow} algorithm and its momentum variant that provably converge to the optimal solution of objective functions satisfying the Polyak-{\L}ojasiewicz (PL) inequality, in a fixed-time. Moreover for functions that admit non-degenerate saddle-points, we show that for the proposed GenFlow algorithm, the time required to evade these saddle-points is bounded uniformly for all initial conditions. Finally, for strongly convex-strongly concave minimax problems whose optimal solution is a saddle point, a similar scheme is shown to arrive at the optimal solution again in a fixed-time. The superior convergence properties of our algorithm are validated experimentally on a variety of benchmark datasets.

Automated Machine Learning-based systems' integration into a wide range of tasks has expanded as a result of their performance and speed. Although there are numerous advantages to employing ML-based systems, if they are not interpretable, they should not be used in critical, high-risk applications where human lives are at risk. To address this issue, researchers and businesses have been focusing on finding ways to improve the interpretability of complex ML systems, and several such methods have been developed. Indeed, there are so many developed techniques that it is difficult for practitioners to choose the best among them for their applications, even when using evaluation metrics. As a result, the demand for a selection tool, a meta-explanation technique based on a high-quality evaluation metric, is apparent. In this paper, we present a local meta-explanation technique which builds on top of the truthfulness metric, which is a faithfulness-based metric. We demonstrate the effectiveness of both the technique and the metric by concretely defining all the concepts and through experimentation.

This work studies the problem of transfer learning under the functional linear regression model framework, which aims to improve the estimation and prediction of the target model by leveraging the information from related source models. We measure the relatedness between target and source models using Reproducing Kernel Hilbert Spaces (RKHS) norm, allowing the type of information being transferred to be interpreted by the structural properties of the spaces. Two transfer learning algorithms are proposed: one transfers information from source tasks when we know which sources to use, while the other one aggregates multiple transfer learning results from the first algorithm to achieve robust transfer learning without prior information about the sources. Furthermore, we establish the optimal convergence rates for the prediction risk in the target model, making the statistical gain via transfer learning mathematically provable. The theoretical analysis of the prediction risk also provides insights regarding what factors are affecting the transfer learning effect, i.e. what makes source tasks useful to the target task. We demonstrate the effectiveness of the proposed transfer learning algorithms on extensive synthetic data as well as real financial data application.

The pseudoinverse of a matrix, a generalized notion of the inverse, is of fundamental importance in linear algebra. However, there does not exist a closed form representation of the pseudoinverse, which can be straightforwardly computed. Therefore, an algorithmic computation is necessary. An algorithmic computation can only be evaluated by also considering the underlying hardware, typically digital hardware, which is responsible for performing the actual computations step by step. In this paper, we analyze if and to what degree the pseudoinverse actually can be computed on digital hardware platforms modeled as Turing machines. For this, we utilize the notion of an effective algorithm which describes a provably correct computation: upon an input of any error parameter, the algorithm provides an approximation within the given error bound with respect to the unknown solution. We prove that an effective algorithm for computing the pseudoinverse of any matrix can not exist on a Turing machine, although provably correct algorithms do exist for specific classes of matrices. Even more, our results introduce a lower bound on the accuracy that can be obtained algorithmically when computing the pseudoinverse on Turing machines.

The problem of low rank approximation is ubiquitous in science. Traditionally this problem is solved in unitary invariant norms such as Frobenius or spectral norm due to existence of efficient methods for building approximations. However, recent results reveal the potential of low rank approximations in Chebyshev norm, which naturally arises in many applications. In this paper we tackle the problem of building optimal rank-1 approximations in the Chebyshev norm. We investigate the properties of alternating minimization algorithm for building the low rank approximations and demonstrate how to use it to construct optimal rank-1 approximation. As a result we propose an algorithm that is capable of building optimal rank-1 approximations in Chebyshev norm for small matrices.

Existing works on IRS have mainly considered IRS being deployed in the environment to dynamically control the wireless channels between the BS and its served users. In contrast, we propose in this paper a new integrated IRS BS architecture by deploying IRSs inside the BS antenna radome. Since the distance between the integrated IRSs and BS antenna array is practically small, the path loss among them is significantly reduced and the real time control of the IRS reflection by the BS becomes easier to implement. However, the resultant near field channel model also becomes drastically different. Thus, we propose an element wise channel model for IRS to characterize the channel vector between each single antenna user and the antenna array of the BS, which includes the direct (without any IRS reflection) as well as the single and double IRS-reflection channel components. Then, we formulate a problem to optimize the reflection coefficients of all IRS reflecting elements for maximizing the uplink sum rate of the users. By considering two typical cases with/without perfect CSI at the BS, the formulated problem is solved efficiently by adopting the successive refinement method and iterative random phase algorithm (IRPA), respectively. Numerical results validate the substantial capacity gain of the integrated IRS BS architecture over the conventional multi antenna BS without integrated IRS. Moreover, the proposed algorithms significantly outperform other benchmark schemes in terms of sum rate, and the IRPA without CSI can approach the performance upper bound with perfect CSI as the training overhead increases.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

北京阿比特科技有限公司