Existing works on IRS have mainly considered IRS being deployed in the environment to dynamically control the wireless channels between the BS and its served users. In contrast, we propose in this paper a new integrated IRS BS architecture by deploying IRSs inside the BS antenna radome. Since the distance between the integrated IRSs and BS antenna array is practically small, the path loss among them is significantly reduced and the real time control of the IRS reflection by the BS becomes easier to implement. However, the resultant near field channel model also becomes drastically different. Thus, we propose an element wise channel model for IRS to characterize the channel vector between each single antenna user and the antenna array of the BS, which includes the direct (without any IRS reflection) as well as the single and double IRS-reflection channel components. Then, we formulate a problem to optimize the reflection coefficients of all IRS reflecting elements for maximizing the uplink sum rate of the users. By considering two typical cases with/without perfect CSI at the BS, the formulated problem is solved efficiently by adopting the successive refinement method and iterative random phase algorithm (IRPA), respectively. Numerical results validate the substantial capacity gain of the integrated IRS BS architecture over the conventional multi antenna BS without integrated IRS. Moreover, the proposed algorithms significantly outperform other benchmark schemes in terms of sum rate, and the IRPA without CSI can approach the performance upper bound with perfect CSI as the training overhead increases.
This article describes a custom VHDL firmware implementation of a two-dimensional cluster-finder architecture for reconstructing hit positions in the new vertex pixel detector (VELO) that is part of the LHCb Upgrade. This firmware has been deployed to the existing FPGA cards that perform the readout of the VELO, as a further enhancement of the DAQ system, and will run in real time during physics data taking, reconstructing VELO hits coordinates on-the-fly at the LHC collision rate. This pre-processing allows the first level of the software trigger to accept a 11% higher rate of events, as the ready-made hits coordinates accelerate the track reconstruction and consumes significantly less electrical power. It additionally allows the raw pixel data to be dropped at the readout level, thus saving approximately 14% of the DAQ bandwidth. Detailed simulation studies have shown that the use of this real-time cluster finding does not introduce any appreciable degradation in the tracking performance in comparison to a full-fledged software implementation. This work is part of a wider effort aimed at boosting the real-time processing capability of HEP experiments by delegating intensive tasks to dedicated computing accelerators deployed at the earliest stages of the data acquisition chain.
In this paper, a channel estimation technique for reconfigurable intelligent surface (RIS)-aided multi-user multiple-input single-output communication systems is proposed. By deploying a small number of active elements at the RIS, the RIS can receive and process the training signals. Through the partial channel state information (CSI) obtained from the active elements, the overall training overhead to estimate the entire channel can be dramatically reduced. To minimize the estimation complexity, the proposed technique is based on the linear combination of partial CSI, which only requires linear matrix operations. By exploiting the spatial correlation among the RIS elements, proper weights for the linear combination and normalization factors are developed. Numerical results show that the proposed technique outperforms other schemes using the active elements at the RIS in terms of the normalized mean squared error when the number of active elements is small, which is necessary to maintain the low cost and power consumption of RIS.
Current discussions on the sixth Generation (6G) of wireless communications are envisioning future networks as a unified communication, sensing, and computing platform that intelligently enables diverse services, ranging from immersive to mission critical applications. The recently conceived concept of the smart radio environment, enabled by Reconfigurable Intelligent Surfaces (RISs), contributes towards this intelligent networking trend, offering programmable propagation of information-bearing signals, which can be jointly optimized with transceiver operations. Typical RIS implementations include metasurfaces with nearly passive meta-atoms, allowing to solely reflect the incident wave in an externally controllable way. However, this purely reflective nature induces significant challenges in the RIS orchestration from the wireless network. For example, channel estimation, which is essential for coherent communications in RIS-empowered wireless networks, is quite challenging with the available RIS designs. This article introduces the concept of Hybrid reflecting and sensing RISs (HRISs), which enables metasurfaces to reflect the impinging signal in a controllable manner, while simultaneously sense a portion of it. The sensing capability of HRISs facilitates various network management functionalities, including channel estimation and localization. We discuss a hardware design for HRISs and detail a full-wave proof-of-concept. We highlight their distinctive properties in comparison to reflective RISs and active relays, and present a simulation study evaluating the HRIS capability for performing channel estimation. Future research challenges and opportunities arising from the concept of HRISs are presented.
Although the multi-antenna or so-called multiple-input multiple-output (MIMO) transmission has been the enabling technology for the past generations of radio-frequency (RF)-based wireless communication systems, its application to the visible light communication (VLC) still faces a critical challenge as the MIMO spatial multiplexing gain can be hardly attained in VLC channels due to their strong spatial correlation. In this paper, we tackle this problem by deploying the optical intelligent reflecting surface (OIRS) in the environment to boost the capacity of MIMO VLC. Firstly, based on the extremely near-field channel condition in VLC, we propose a new channel model for OIRS-assisted MIMO VLC and reveal its peculiar ``no crosstalk'' property, where the OIRS reflecting elements can be respectively configured to align with one pair of transmitter and receiver antennas without causing crosstalk to each other. Next, we characterize the OIRS-assisted MIMO VLC capacities under different practical power constraints and then proceed to maximize them by jointly optimizing the OIRS element alignment and transmitter emission power. In particular, for optimizing the OIRS element alignment, we propose two algorithms, namely, location-aided interior-point algorithm and log-det-based alternating optimization algorithm, to balance the performance versus complexity trade-off; while the optimal transmitter emission power is derived in closed form. Numerical results are provided, which validate the capacity improvement of OIRS-assisted MIMO VLC against the VLC without OIRS and demonstrate the superior performance of the proposed algorithms compared to baseline schemes.
The predominant approach in reinforcement learning is to assign credit to actions based on the expected return. However, we show that the return may depend on the policy in a way which could lead to excessive variance in value estimation and slow down learning. Instead, we show that the advantage function can be interpreted as causal effects and shares similar properties with causal representations. Based on this insight, we propose Direct Advantage Estimation (DAE), a novel method that can model the advantage function and estimate it directly from on-policy data while simultaneously minimizing the variance of the return without requiring the (action-)value function. We also relate our method to Temporal Difference methods by showing how value functions can be seamlessly integrated into DAE. The proposed method is easy to implement and can be readily adapted by modern actor-critic methods. We evaluate DAE empirically on three discrete control domains and show that it can outperform generalized advantage estimation (GAE), a strong baseline for advantage estimation, on a majority of the environments when applied to policy optimization.
In this paper, for the first time, we present a direct and new construction of multiple zero-correlation zone (ZCZ) sequence sets with inter-set zero-cross correlation zone (ZCCZ) from generalised Boolean function. Tang \emph{et al.} in their 2010 paper, proposed an open problem to construct $N$ binary ZCZ sequence sets such that each of these ZCZ sequence sets is optimal and if the union of these $N$ sets is taken then that union is again an optimal ZCZ sequence set. The proposed construction partially settles this open problem by presenting a construction of optimal ZCZ sequence sets such that their union is a near-optimal ZCZ sequence set. Further, the performance parameter of each binary ZCZ sequence set in the proposed construction is $1$ and tends to $1$ for their union. The proposed construction is presented by a two-layer graphical representation and compared with the existing state-of-the-art. Finally, novel multi-cluster quasi synchronous-code division multiple access (QS-CDMA) system model is provided by using the proposed multiple ZCZ sequence sets.
Cell-free (CF) massive multiple-input multiple-output (MIMO) systems, which exploit many geographically distributed access points to coherently serve user equipments via spatial multiplexing on the same time-frequency resource, has become a vital component of the next-generation mobile communication networks. Theoretically, CF massive MIMO systems have many advantages, such as large capacity, great coverage, and high reliability, but several obstacles must be overcome. In this article, we study the paradigm of CF massive MIMO-aided mobile communications, including the main application scenarios and associated deployment architectures. Furthermore, we thoroughly investigate the challenges of CF massive MIMO-aided mobile communications. We then propose a novel predictor antenna, hierarchical cancellation, rate-splitting and dynamic clustering system for CF massive MIMO. Finally, several important research directions regarding CF massive MIMO for mobile communications are presented to facilitate further investigation.
This paper explores the use of reconfigurable intelligent surfaces (RIS) in mitigating cross-system interference in spectrum sharing and secure wireless applications. Unlike conventional RIS that can only adjust the phase of the incoming signal and essentially reflect all impinging energy, or active RIS, which also amplify the reflected signal at the cost of significantly higher complexity, noise, and power consumption, an absorptive RIS (ARIS) is considered. An ARIS can in principle modify both the phase and modulus of the impinging signal by absorbing a portion of the signal energy, providing a compromise between its conventional and active counterparts in terms of complexity, power consumption, and degrees of freedom (DoFs). We first use a toy example to illustrate the benefit of ARIS, and then we consider three applications: (1) Spectral coexistence of radar and communication systems, where a convex optimization problem is formulated to minimize the Frobenius norm of the channel matrix from the communication base station to the radar receiver; (2) Spectrum sharing in device-to-device (D2D) communications, where a max-min scheme that maximizes the worst-case signal-to-interference-plus-noise ratio (SINR) among the D2D links is developed and then solved via fractional programming; (3) The physical layer security of a downlink communication system, where the secrecy rate is maximized and the resulting nonconvex problem is solved by a fractional programming algorithm together with a sequential convex relaxation procedure. Numerical results are then presented to show the significant benefit of ARIS in these applications.
We present a generalised phase field formulation for predicting high-cycle fatigue in metals. Different fatigue degradation functions are presented, together with new damage accumulation strategies, to account for (i) a typical S-N curve slope, (ii) the fatigue endurance limit, and (iii) the mean stress effect. The numerical implementation exploits an efficient quasi-Newton monolithic solution strategy and Virtual S-N curves are computed for both smooth and notched samples. The comparison with experiments reveals that the model can accurately predict fatigue lives and endurance limits, as well as naturally capture the influence of the stress concentration factor and the load ratio.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.