In this paper, a channel estimation technique for reconfigurable intelligent surface (RIS)-aided multi-user multiple-input single-output communication systems is proposed. By deploying a small number of active elements at the RIS, the RIS can receive and process the training signals. Through the partial channel state information (CSI) obtained from the active elements, the overall training overhead to estimate the entire channel can be dramatically reduced. To minimize the estimation complexity, the proposed technique is based on the linear combination of partial CSI, which only requires linear matrix operations. By exploiting the spatial correlation among the RIS elements, proper weights for the linear combination and normalization factors are developed. Numerical results show that the proposed technique outperforms other schemes using the active elements at the RIS in terms of the normalized mean squared error when the number of active elements is small, which is necessary to maintain the low cost and power consumption of RIS.
Reconfigurable intelligent surface (RIS) have been cast as a promising alternative to alleviate blockage vulnerability and enhance coverage capability for terahertz (THz) communications. Owning to large-scale array elements at transceivers and RIS, the codebook based beamforming can be utilized in a computationally efficient manner. However, the codeword selection for analog beamforming is an intractable combinatorial optimization (CO) problem. To this end, by taking the CO problem as a classification problem, a multi-task learning based analog beam selection (MTL-ABS) framework is developed to implement multiple codeword selection tasks concurrently at transceivers and RIS and to accelerate the beam training process. In addition, residual network and self-attention mechanism are used to combat the network degradation and mine intrinsic THz channel features. Finally, the network convergence is analyzed from a blockwise perspective, and numerical results demonstrate that the MTL-ABS framework greatly decreases the beam training overhead and achieves near optimal sum-rate compared with heuristic search based counterparts.
The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the propagation environment. Compared to that, the questions related to link/MAC protocol and system-level integration of RISs have received much less attention. This paper addresses the problem of designing and analyzing control/signaling procedures, which are necessary for the integration of RISs as a new type of network element within the overall wireless infrastructure. We build a general model for designing control channels along two dimensions: i) allocated bandwidth (in-band and out-of band) and ii) rate selection (multiplexing or diversity). Specifically, the second dimension results in two transmission schemes, one based on channel estimation and the subsequent adapted RIS configuration, while the other is based on sweeping through predefined RIS phase profiles. The paper analyzes the performance of the control channel in multiple communication setups, obtained as combinations of the aforementioned dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in designing control channels and the associated communication algorithms. Perhaps the main value of this work is to serve as a framework for subsequent design and analysis of various system-level aspects related to the RIS technology.
In this paper, we examine how to minimize the total energy consumption of a user equipment (UE) when it transmits a finite-sized data payload of a given length. The receiving base station (BS) controls a reconfigurable intelligent surface (RIS) that can be utilized to improve the channel conditions, but only if additional pilot signals are transmitted to configure the RIS. The challenge is that the pilot resources spent on configuring the RIS increase the energy consumption, especially when small payloads are transmitted, so it must be balanced against the energy savings during data transmission. We derive a formula for the energy consumption, taking both the pilot and data transmission power into account. It also includes the effects of imperfect channel state information, the use of phase-shifts with finite resolution at the RIS, and the passive circuit energy consumption. We also consider how dividing the RIS into subarrays consisting of multiple RIS elements using the same reflection coefficient can shorten the pilot length. In particular, the pilot power and subarray size are tuned to the payload length to minimize the energy consumption while maintaining parts of the aperture gain. Our analytical results show that, for a given geometry and transmission payload length, there exists a unique energy-minimizing subarray size and pilot power. For small payloads and when the channel conditions between the BS and UE are favorable compared to the path to the RIS, the energy consumption is minimized using subarrays with many elements and low pilot transmission power. On the other hand, when the channel conditions to the RIS are better and the data payloads are large, it is preferable to use fewer elements per subarray, potentially configuring each element individually and transmitting the pilot signals with additional power.
In this paper, we examine the energy consumption of a user equipment (UE) when it transmits a finite-sized data packet. The receiving base station (BS) controls a reconfigurable intelligent surface (RIS) that can be utilized to improve the channel conditions, if additional pilot signals are transmitted to configure the RIS. We derive a formula for the energy consumption taking both the pilot and data transmission powers into account. By dividing the RIS into subarrays consisting of multiple RIS elements using the same reflection coefficient, the pilot overhead can be tuned to minimize the energy consumption while maintaining parts of the aperture gain. Our analytical results show that there exists an energy-minimizing subarray size. For small data blocks and when the channel conditions between the BS and UE are favorable compared to the path to the RIS, the energy consumption is minimized using large subarrays. When the channel conditions to the RIS are better and the data blocks are large, it is preferable to use fewer elements per subarray and potentially configure the elements individually.
We propose a novel method to reconstruct the 3D shapes of transparent objects using hand-held captured images under natural light conditions. It combines the advantage of explicit mesh and multi-layer perceptron (MLP) network, a hybrid representation, to simplify the capture setting used in recent contributions. After obtaining an initial shape through the multi-view silhouettes, we introduce surface-based local MLPs to encode the vertex displacement field (VDF) for the reconstruction of surface details. The design of local MLPs allows to represent the VDF in a piece-wise manner using two layer MLP networks, which is beneficial to the optimization algorithm. Defining local MLPs on the surface instead of the volume also reduces the searching space. Such a hybrid representation enables us to relax the ray-pixel correspondences that represent the light path constraint to our designed ray-cell correspondences, which significantly simplifies the implementation of single-image based environment matting algorithm. We evaluate our representation and reconstruction algorithm on several transparent objects with ground truth models. Our experiments show that our method can produce high-quality reconstruction results superior to state-of-the-art methods using a simplified data acquisition setup.
Dynamic Time Warping (DTW) is a popular time series distance measure that aligns the points in two series with one another. These alignments support warping of the time dimension to allow for processes that unfold at differing rates. The distance is the minimum sum of costs of the resulting alignments over any allowable warping of the time dimension. The cost of an alignment of two points is a function of the difference in the values of those points. The original cost function was the absolute value of this difference. Other cost functions have been proposed. A popular alternative is the square of the difference. However, to our knowledge, this is the first investigation of both the relative impacts of using different cost functions and the potential to tune cost functions to different tasks. We do so in this paper by using a tunable cost function {\lambda}{\gamma} with parameter {\gamma}. We show that higher values of {\gamma} place greater weight on larger pairwise differences, while lower values place greater weight on smaller pairwise differences. We demonstrate that training {\gamma} significantly improves the accuracy of both the DTW nearest neighbor and Proximity Forest classifiers.
Reconfigurable intelligent surface (RIS) has gained much traction due to its potential to manipulate the propagation environment via nearly-passive reconfigurable elements. In our previous work, we have analyzed and proposed a beyond diagonal RIS (BD-RIS) model, which is not limited to traditional diagonal phase shift matrices, to unify different RIS modes/architectures. In this paper, we create a new branch of BD-RIS supporting a multi-sector mode. A multi-sector BD-RIS is modeled as multiple antennas connected to a multi-port group-connected reconfigurable impedance network. More specifically, antennas are divided into $L$ ($L \ge 2$) sectors and arranged as a polygon prism with each sector covering $1/L$ space. Different from the recently introduced concept of intelligent omni-surface (or simultaneously transmitting and reflecting RIS), the multi-sector BD-RIS not only achieves a full-space coverage, but also has significant performance gains thanks to the highly directional beam of each sector.We derive the constraint of the multi-sector BD-RIS and the corresponding channel model taking into account the relationship between antenna beamwidth and gain. With the proposed model, we first derive the scaling law of the received signal power for a multi-sector BD-RIS-assisted single-user system. We then propose efficient beamforming design algorithms to maximize the sum-rate of the multi-sector BD-RIS-assisted multiuser system. Simulation results verify the effectiveness of the proposed design and demonstrate the performance enhancement of the proposed multi-sector BD-RIS.
Aiming at the disorder problem (i.e. uncertainty problem) of the utilization of network resources commonly existing in multi-hop transmission networks, the paper proposes the idea and the corresponding supporting theory, i.e. theory of network wave, by constructing volatility information transmission mechanism between the sending nodes and their corresponding receiving nodes of a pair of paths (composed of two primary paths), so as to improve the orderliness of the utilization of network resources. It is proved that the maximum asymptotic throughput of a primary path depends on its intrinsic period, which in itself is equal to the intrinsic interference intensity of a primary path. Based on the proposed theory of network wave, an algorithm for the transmission of information blocks based on the intrinsic period of a primary path is proposed, which can maximize the asymptotic throughput of a primary path. In the cases of traversals with equal opportunities, an algorithm for the cooperative volatility transmission of information blocks in a pair of paths based on the set of maximum supporting elements is proposed. It is proved that the algorithm can maximize the asymptotic joint throughput of a pair of paths. The research results of the paper lay an ideological and theoretical foundation for further exploring more general methods that can improve the orderly utilization of network resources.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.