Millimeter-wave (mmWave) networks, integral to 5G communication, offer a vast spectrum that addresses the issue of spectrum scarcity and enhances peak rate and capacity. However, their dense deployment, necessary to counteract propagation losses, leads to high power consumption. An effective strategy to reduce this energy consumption in mobile networks is the sleep mode optimization (SMO) of base stations (BSs). In this paper, we propose a novel SMO approach for mmWave BSs in a 3D urban environment. This approach, which incorporates a neural network (NN) based contextual multi-armed bandit (C-MAB) with an epsilon decay algorithm, accommodates the dynamic and diverse traffic of user equipment (UE) by clustering the UEs in their respective tracking areas (TAs). Our strategy includes beamforming, which helps reduce energy consumption from the UE side, while SMO minimizes energy use from the BS perspective. We extended our investigation to include Random, Epsilon Greedy, Upper Confidence Bound (UCB), and Load Based sleep mode (SM) strategies. We compared the performance of our proposed C-MAB based SM algorithm with those of All On and other alternative approaches. Simulation results show that our proposed method outperforms all other SM strategies in terms of the $10^{th}$ percentile of user rate and average throughput while demonstrating comparable average throughput to the All On approach. Importantly, it outperforms all approaches in terms of energy efficiency (EE).
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations. We innovatively propose a fusion architecture, namely Dual-Stream Temporal-Spatial Block (DSTS), to capture temporal and spatial features, improving the accuracy of Motor Imagery classification task. Additionally, we use multiple parallel structures to enhance the performance of the model. When tested on the BCI Competition IV-2a dataset, our model results outperform current state-of-the-art techniques.
The emergence of Centralized-RAN (C-RAN) has revolutionized mobile network infrastructure, offering streamlined cell-site engineering and enhanced network management capabilities. As C-RAN gains momentum, the focus shifts to optimizing fronthaul links. While fiber fronthaul guarantees performance, wireless alternatives provide cost efficiency and scalability, making them preferable in densely urbanized areas. However, wireless fronthaul often requires expensive over-dimensioning to overcome the challenging atmospheric attenuation typical of high frequencies. We propose a framework designed to continuously align radio access capacity with fronthaul link quality to overcome this rigidity. By gradually adapting radio access capacity to available fronthaul capacity, the framework ensures smooth degradation rather than complete service loss. Various strategies are proposed, considering factors like functional split and beamforming technology and exploring the tradeoff between adaptation strategy complexity and end-to-end system performance. Numerical evaluations using experimental rain attenuation data illustrate the framework's effectiveness in optimizing radio access capacity under realistically variable fronthaul link quality, ultimately proving the importance of adaptive capacity management in maximizing C-RAN efficiency.
Image classifiers often rely on convolutional neural networks (CNN) for their tasks, which, for image classification, experience high latency due to the number of operations they perform, which can be problematic in real-time applications. Additionally, many image classification models work on both RGB and grayscale datasets. Classifiers that operate solely on grayscale images are much less common. Grayscale image classification has diverse applications, including but not limited to medical image classification and synthetic aperture radar (SAR) automatic target recognition (ATR). Thus, we present a novel grayscale image classification approach using a vectorized view of images. We exploit the lightweightness of MLPs by viewing images as vectors and reducing our problem setting to the grayscale image classification setting. We find that using a single graph convolutional layer batch-wise increases accuracy and reduces variance in the performance of our model. Moreover, we develop a customized accelerator on FPGA for the proposed model with several optimizations to improve its performance. Our experimental results on benchmark grayscale image datasets demonstrate the effectiveness of the proposed model, achieving vastly lower latency (up to 16$\times$ less) and competitive or leading performance compared to other state-of-the-art image classification models on various domain-specific grayscale image classification datasets.
Click-Through Rate (CTR) prediction has become an essential task in digital industries, such as digital advertising or online shopping. Many deep learning-based methods have been implemented and have become state-of-the-art models in the domain. To further improve the performance of CTR models, Knowledge Distillation based approaches have been widely used. However, most of the current CTR prediction models do not have much complex architectures, so it's hard to call one of them 'cumbersome' and the other one 'tiny'. On the other hand, the performance gap is also not very large between complex and simple models. So, distilling knowledge from one model to the other could not be worth the effort. Under these considerations, Mutual Learning could be a better approach, since all the models could be improved mutually. In this paper, we showed how useful the mutual learning algorithm could be when it is between equals. In our experiments on the Criteo and Avazu datasets, the mutual learning algorithm improved the performance of the model by up to 0.66% relative improvement.
Federated Knowledge Graph Embedding (FKGE) has recently garnered considerable interest due to its capacity to extract expressive representations from distributed knowledge graphs, while concurrently safeguarding the privacy of individual clients. Existing FKGE methods typically harness the arithmetic mean of entity embeddings from all clients as the global supplementary knowledge, and learn a replica of global consensus entities embeddings for each client. However, these methods usually neglect the inherent semantic disparities among distinct clients. This oversight not only results in the globally shared complementary knowledge being inundated with too much noise when tailored to a specific client, but also instigates a discrepancy between local and global optimization objectives. Consequently, the quality of the learned embeddings is compromised. To address this, we propose Personalized Federated knowledge graph Embedding with client-wise relation Graph (PFedEG), a novel approach that employs a client-wise relation graph to learn personalized embeddings by discerning the semantic relevance of embeddings from other clients. Specifically, PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients based on their "affinity" on the client-wise relation graph. Each client then conducts personalized embedding learning based on its local triples and personalized supplementary knowledge. We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models and results demonstrate the superiority of our method.
Vehicular edge computing (VEC) is an emerging technology that enables vehicles to perform high-intensity tasks by executing tasks locally or offloading them to nearby edge devices. However, obstacles such as buildings may degrade the communications and incur communication interruptions, and thus the vehicle may not meet the requirement for task offloading. Reconfigurable intelligent surfaces (RIS) is introduced to support vehicle communication and provide an alternative communication path. The system performance can be improved by flexibly adjusting the phase-shift of the RIS. For RIS-assisted VEC system where tasks arrive randomly, we design a control scheme that considers offloading power, local power allocation and phase-shift optimization. To solve this non-convex problem, we propose a new deep reinforcement learning (DRL) framework that employs modified multi-agent deep deterministic policy gradient (MADDPG) approach to optimize the power allocation for vehicle users (VUs) and block coordinate descent (BCD) algorithm to optimize the phase-shift of the RIS. Simulation results show that our proposed scheme outperforms the centralized deep deterministic policy gradient (DDPG) scheme and random scheme.
Degraded broadcast channels (DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. In the proposed method, the transmitter extracts semantic features for two users separately. It then effectively fuses these semantic features for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance the performance between the two users. Considering the different channel state information (CSI) of both users over DBC, a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel. Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.