亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study explores the use of non-line-of-sight (NLOS) components in millimeter-wave (mmWave) communication systems for joint localization and environment sensing. The radar cross section (RCS) of a reconfigurable intelligent surface (RIS) is calculated to develop a general path gain model for RISs and traditional scatterers. The results show that RISs have a greater potential to assist in localization due to their ability to maintain high RCSs and create strong NLOS links. A one-stage linear weighted least squares estimator is proposed to simultaneously determine user equipment (UE) locations, velocities, and scatterer (or RIS) locations using line-of-sight (LOS) and NLOS paths. The estimator supports environment sensing and UE localization even using only NLOS paths. A second-stage estimator is also introduced to improve environment sensing accuracy by considering the nonlinear relationship between UE and scatterer locations. Simulation results demonstrate the effectiveness of the proposed estimators in rich scattering environments and the benefits of using NLOS paths for improving UE location accuracy and assisting in environment sensing. The effects of RIS number, size, and deployment on localization performance are also analyzed.

相關內容

This paper investigates the broadband channel estimation (CE) for intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) massive MIMO systems. The CE for such systems is a challenging task due to the large dimension of both the active massive MIMO at the base station (BS) and passive IRS. To address this problem, this paper proposes a compressive sensing (CS)-based CE solution for IRS-aided mmWave massive MIMO systems, whereby the angular channel sparsity of large-scale array at mmWave is exploited for improved CE with reduced pilot overhead. Specifically, we first propose a downlink pilot transmission framework. By designing the pilot signals based on the prior knowledge that the line-of-sight dominated BS-to-IRS channel is known, the high-dimensional channels for BS-to-user and IRS-to-user can be jointly estimated based on CS theory. Moreover, to efficiently estimate broadband channels, a distributed orthogonal matching pursuit algorithm is exploited, where the common sparsity shared by the channels at different subcarriers is utilized. Additionally, the redundant dictionary to combat the power leakage is also designed for the enhanced CE performance. Simulation results demonstrate the effectiveness of the proposed scheme.

In this paper, we investigate the spatial-wideband effects in cell-free massive MIMO (CF-mMIMO) systems in mmWave bands. The utilization of mmWave frequencies brings challenges such as signal attenuation and the need for denser networks like ultra-dense networks (UDN) to maintain communication performance. CF-mMIMO is introduced as a solution, where distributed access points (APs) transmit signals to a central processing unit (CPU) for joint processing. CF-mMIMO offers advantages in reducing non-line-of-sight (NLOS) conditions and overcoming signal blockage. We investigate the synchronization problem in CF-mMIMO due to time delays between APs. It proposes a minimum cyclic prefix length to mitigate inter-symbol interference (ISI) in OFDM systems. Furthermore, the spatial correlations of channel responses are analyzed in the frequency-phase domain. The impact of these correlations on system performance is examined. The findings contribute to improving the performance of CF-mMIMO systems and enhancing the effective utilization of mmWave communication.

This article is a supplement to my main contribution to the Routledge Handbook of Complexity Economics (2023). On the basis of three recent papers, it presents an unconventional perspective on economic inequality from a statistical physics point of view. One section demonstrates empirical evidence for the exponential distribution of income in 67 countries around the world. The exponential distribution was not familiar to mainstream economists until it was introduced by physicists by analogy with the Boltzmann-Gibbs distribution of energy and subsequently confirmed in empirical data for many countries. Another section reviews the two-class structure of income distribution in the USA. While the exponential law describes the majority of population (the lower class), the top tail of income distribution (the upper class) is characterized by the Pareto power law, and there is no clearly defined middle class in between. As a result, the whole distribution can be very well fitted by using only three parameters. Historical evolution of these parameters and inequality trends are analyzed from 1983 to 2018. Finally, global inequality in energy consumption and CO2 emissions per capita is studied using the empirical data from 1980 to 2017. Global inequality, as measured by the Gini coefficient G, has been decreasing until around 2010, but then saturated at the level G=0.5. The saturation at this level was theoretically predicted on the basis of the maximal entropy principle, well before the slowdown of the global inequality decrease became visible in the data. This effect is attributed to accelerated mixing of the world economy due to globalization, which brings it to the state of maximal entropy and thus results in global economic stagnation. This observation has profound consequences for social and geopolitical stability and the efforts to deal with the climate change.

In this paper, a hybrid non-orthogonal multiple access (NOMA) framework for the simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) enhanced cell-edge communication is investigated. Specifically, one transmitted user and one reflected user are paired as one NOMA-pair, while multiple NOMA-pairs are served via time division multiple access (TDMA). The objective is to maximize the minimum downlink rate by jointly optimizing the user pairing, decoding order, passive beamforming, power and time allocation. A novel two-layer iterative algorithm is proposed to solve the highly coupled problem. Simulation results show that: 1) the proposed framework outperforms the conventional reflecting-only-RIS-based and the OMA-based frameworks; 2) the beamforming design and power allocation dominate the achieved performance; 3) increasing the number of passive elements and shortening the distance between BS and STAR-RIS are two effective ways to further improve the performance.

Federated learning (FL) enables collaborative training of a shared model on edge devices while maintaining data privacy. FL is effective when dealing with independent and identically distributed (iid) datasets, but struggles with non-iid datasets. Various personalized approaches have been proposed, but such approaches fail to handle underlying shifts in data distribution, such as data distribution skew commonly observed in real-world scenarios (e.g., driver behavior in smart transportation systems changing across time and location). Additionally, trust concerns among unacquainted devices and security concerns with the centralized aggregator pose additional challenges. To address these challenges, this paper presents a dynamically optimized personal deep learning scheme based on blockchain and federated learning. Specifically, the innovative smart contract implemented in the blockchain allows distributed edge devices to reach a consensus on the optimal weights of personalized models. Experimental evaluations using multiple models and real-world datasets demonstrate that the proposed scheme achieves higher accuracy and faster convergence compared to traditional federated and personalized learning approaches.

The hardware computing landscape is changing. What used to be distributed systems can now be found on a chip with highly configurable, diverse, specialized and general purpose units. Such Systems-on-a-Chip (SoC) are used to control today's cyber-physical systems, being the building blocks of critical infrastructures. They are deployed in harsh environments and are connected to the cyberspace, which makes them exposed to both accidental faults and targeted cyberattacks. This is in addition to the changing fault landscape that continued technology scaling, emerging devices and novel application scenarios will bring. In this paper, we discuss how the very features, distributed, parallelized, reconfigurable, heterogeneous, that cause many of the imminent and emerging security and resilience challenges, also open avenues for their cure though SoC replication, diversity, rejuvenation, adaptation, and hybridization. We show how to leverage these techniques at different levels across the entire SoC hardware/software stack, calling for more research on the topic.

Upon the advent of the emerging metaverse and its related applications in Augmented Reality (AR), the current bit-oriented network struggles to support real-time changes for the vast amount of associated information, hindering its development. Thus, a critical revolution in the Sixth Generation (6G) networks is envisioned through the joint exploitation of information context and its importance to the task, leading to a communication paradigm shift towards semantic and effectiveness levels. However, current research has not yet proposed any explicit and systematic communication framework for AR applications that incorporate these two levels. To fill this research gap, this paper presents a task-oriented and semantics-aware communication framework for augmented reality (TSAR) to enhance communication efficiency and effectiveness in 6G. Specifically, we first analyse the traditional wireless AR point cloud communication framework and then summarize our proposed semantic information along with the end-to-end wireless communication. We then detail the design blocks of the TSAR framework, covering both semantic and effectiveness levels. Finally, numerous experiments have been conducted to demonstrate that, compared to the traditional point cloud communication framework, our proposed TSAR significantly reduces wireless AR application transmission latency by 95.6%, while improving communication effectiveness in geometry and color aspects by up to 82.4% and 20.4%, respectively.

Triple Modular Redundancy (TMR) is one of the most common techniques in fault-tolerant systems, in which the output is determined by a majority voter. However, the design diversity of replicated modules and/or soft errors that are more likely to happen in the nanoscale era may affect the majority voting scheme. Besides, the significant overheads of the TMR scheme may limit its usage in energy consumption and area-constrained critical systems. However, for most inherently error-resilient applications such as image processing and vision deployed in critical systems (like autonomous vehicles and robotics), achieving a given level of reliability has more priority than precise results. Therefore, these applications can benefit from the approximate computing paradigm to achieve higher energy efficiency and a lower area. This paper proposes an energy-efficient approximate reliability (X-Rel) framework to overcome the aforementioned challenges of the TMR systems and get the full potential of approximate computing without sacrificing the desired reliability constraint and output quality. The X-Rel framework relies on relaxing the precision of the voter based on a systematical error bounding method that leverages user-defined quality and reliability constraints. Afterward, the size of the achieved voter is used to approximate the TMR modules such that the overall area and energy consumption are minimized. The effectiveness of employing the proposed X-Rel technique in a TMR structure, for different quality constraints as well as with various reliability bounds are evaluated in a 15-nm FinFET technology. The results of the X-Rel voter show delay, area, and energy consumption reductions of up to 86%, 87%, and 98%, respectively, when compared to those of the state-of-the-art approximate TMR voters.

Over-the-air computation (AirComp), as a data aggregation method that can improve network efficiency by exploiting the superposition characteristics of wireless channels, has received much attention recently. Meanwhile, the orthogonal time frequency space (OTFS) modulation can provide a strong Doppler resilience and facilitates reliable transmission for high-mobility communications. Hence, in this work, we investigate an OTFS-based AirComp system in the presence of time-frequency dual-selective channels. In particular, we commence from the development of a novel transmission framework for the considered system, where the pilot signal is sent together with data and the channel estimation is implemented according to the echo from the access point to the sensor, thereby reducing the overhead of channel state information (CSI) feedback. Hereafter, based on the CSI estimated from the previous frame, a robust precoding matrix aiming at minimizing mean square error in the current frame is designed, which takes into account the estimation error from the receiver noise and the outdated CSI. The simulation results demonstrate the effectiveness of the proposed robust precoding scheme by comparing it with the non-robust precoding. The performance gain is more obvious in high signal-to-noise ratio in case of large channel estimation errors.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

北京阿比特科技有限公司