亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As mobile edge computing (MEC) finds widespread use for relieving the computational burden of compute- and interaction-intensive applications on end user devices, understanding the resulting delay and cost performance is drawing significant attention. While most existing works focus on singletask offloading in single-hop MEC networks, next generation applications (e.g., industrial automation, augmented/virtual reality) require advance models and algorithms for dynamic configuration of multi-task services over multi-hop MEC networks. In this work, we leverage recent advances in dynamic cloud network control to provide a comprehensive study of the performance of multi-hop MEC networks, addressing the key problems of multi-task offloading, timely packet scheduling, and joint computation and communication resource allocation. We present a fully distributed algorithm based on Lyapunov control theory that achieves throughput-optimal performance with delay and cost guarantees. Simulation results validate our theoretical analysis and provide insightful guidelines on the interplay between communication and computation resources in MEC networks.

相關內容

Researchers have developed several theoretical models for identifying and categorizing data analysis tasks for visualization systems. However, these models focus primarily on abstraction or generalizing specific tasks into higher-level concepts, resulting in broad guidelines that are not always straightforward to implement within visualization systems. Few models flow in the opposite direction to enable instantiation or a precise approach to applying high-level task concepts to specific analysis scenarios or user interaction logs. This paper presents a synthesis of existing task theory into a new instantiation-focused model and Pyxis, a specification language for applying this model to existing evaluation methods. Specifically, Pyxis enables researchers to dissect theoretical and study-driven analysis sessions to identify instances of tasks that users have performed. Further, it formalizes the relationship between tasks, insights, and objectives implied in prior work. We present three use cases that apply Pyxis to a wide range of analysis scenarios from the literature to demonstrate its utility. Finally, we discuss the model's implications and opportunities for future work.

Neural network models have become the leading solution for a large variety of tasks, such as classification, language processing, protein folding, and others. However, their reliability is heavily plagued by adversarial inputs: small input perturbations that cause the model to produce erroneous outputs. Adversarial inputs can occur naturally when the system's environment behaves randomly, even in the absence of a malicious adversary, and are a severe cause for concern when attempting to deploy neural networks within critical systems. In this paper, we present a new statistical method, called Robustness Measurement and Assessment (RoMA), which can measure the expected robustness of a neural network model. Specifically, RoMA determines the probability that a random input perturbation might cause misclassification. The method allows us to provide formal guarantees regarding the expected frequency of errors that a trained model will encounter after deployment. Our approach can be applied to large-scale, black-box neural networks, which is a significant advantage compared to recently proposed verification methods. We apply our approach in two ways: comparing the robustness of different models, and measuring how a model's robustness is affected by the magnitude of input perturbation. One interesting insight obtained through this work is that, in a classification network, different output labels can exhibit very different robustness levels. We term this phenomenon categorial robustness. Our ability to perform risk and robustness assessments on a categorial basis opens the door to risk mitigation, which may prove to be a significant step towards neural network certification in safety-critical applications.

Mobile crowd sensing and computing (MCSC) enables heterogeneous users (workers) to contribute real-time sensed, generated, and pre-processed data from their mobile devices to the MCSC platform, for intelligent service provisioning. This paper investigates a novel hybrid worker recruitment problem where the MCSC platform employs workers to serve MCSC tasks with diverse quality requirements and budget constraints, while considering uncertainties in workers' participation and their local workloads. We propose a hybrid worker recruitment framework consisting of offline and online trading modes. The former enables the platform to overbook long-term workers (services) to cope with dynamic service supply via signing contracts in advance, which is formulated as 0-1 integer linear programming (ILP) with probabilistic constraints related to service quality and budget. Besides, motivated by the existing uncertainties which may render long-term workers fail to meet the service quality requirement of each task, we augment our methodology with an online temporary worker recruitment scheme as a backup Plan B to support seamless service provisioning for MCSC tasks, which also represents a 0-1 ILP problem. To tackle these problems which are proved to be NP-hard, we develop three algorithms, namely, i) exhaustive searching, ii) unique index-based stochastic searching with risk-aware filter constraint, and iii) geometric programming-based successive convex algorithm, which achieve the optimal (with high computational complexity) or sub-optimal (with low complexity) solutions. Experimental results demonstrate the effectiveness of our proposed hybrid worker recruitment mechanism in terms of service quality, time efficiency, etc.

The security of quantum key distribution (QKD) is severely threatened by discrepancies between realistic devices and theoretical assumptions. Recently, a significant framework called the reference technique was proposed to provide security against arbitrary source flaws, including pulse correlations. Here, we propose an efficient four-phase twin-field QKD using laser pulses adopting the reference technique for security against potential source imperfections. We present a characterization of source flaws and connect them to experiments, together with a finite-key analysis against coherent attacks. In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and achieve a secure key rate of 258 bps with a 20 dB channel loss. Compared with previous QKD protocols with imperfect devices, our study considerably improves both the secure key rate and the transmission distance, and shows application potential in the practical deployment of secure QKD with device imperfections.

Deep learning based techniques achieve state-of-the-art results in a wide range of image reconstruction tasks like compressed sensing. These methods almost always have hyperparameters, such as the weight coefficients that balance the different terms in the optimized loss function. The typical approach is to train the model for a hyperparameter setting determined with some empirical or theoretical justification. Thus, at inference time, the model can only compute reconstructions corresponding to the pre-determined hyperparameter values. In this work, we present a hypernetwork-based approach, called HyperRecon, to train reconstruction models that are agnostic to hyperparameter settings. At inference time, HyperRecon can efficiently produce diverse reconstructions, which would each correspond to different hyperparameter values. In this framework, the user is empowered to select the most useful output(s) based on their own judgement. We demonstrate our method in compressed sensing, super-resolution and denoising tasks, using two large-scale and publicly-available MRI datasets. Our code is available at //github.com/alanqrwang/hyperrecon.

Information about action costs is critical for real-world AI planning applications. Rather than rely solely on declarative action models, recent approaches also use black-box external action cost estimators, often learned from data, that are applied during the planning phase. These, however, can be computationally expensive, and produce uncertain values. In this paper we suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost, to balance computation time against bounded estimation uncertainty. This enables a much richer -- and correspondingly more realistic -- problem representation. Importantly, it allows planners to bound plan accuracy, thereby increasing reliability, while reducing unnecessary computational burden, which is critical for scaling to large problems. We introduce a search algorithm, generalizing $A^*$, that solves such planning problems, and additional algorithmic extensions. In addition to theoretical guarantees, extensive experiments show considerable savings in runtime compared to alternatives.

Currently, the federated graph neural network (GNN) has attracted a lot of attention due to its wide applications in reality without violating the privacy regulations. Among all the privacy-preserving technologies, the differential privacy (DP) is the most promising one due to its effectiveness and light computational overhead. However, the DP-based federated GNN has not been well investigated, especially in the sub-graph-level setting, such as the scenario of recommendation system. The biggest challenge is how to guarantee the privacy and solve the non independent and identically distributed (non-IID) data in federated GNN simultaneously. In this paper, we propose DP-FedRec, a DP-based federated GNN to fill the gap. Private Set Intersection (PSI) is leveraged to extend the local graph for each client, and thus solve the non-IID problem. Most importantly, DP is applied not only on the weights but also on the edges of the intersection graph from PSI to fully protect the privacy of clients. The evaluation demonstrates DP-FedRec achieves better performance with the graph extension and DP only introduces little computations overhead.

This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

北京阿比特科技有限公司