In some practical learning tasks, such as traffic video analysis, the number of available training samples is restricted by different factors, such as limited communication bandwidth and computation power. Determinantal Point Process (DPP) is a common method for selecting the most diverse samples to enhance learning quality. However, the number of selected samples is restricted to the rank of the kernel matrix implied by the dimensionality of data samples. Secondly, it is not easily customizable to different learning tasks. In this paper, we propose a new way of measuring task-oriented diversity based on the Rate-Distortion (RD) theory, appropriate for multi-level classification. To this end, we establish a fundamental relationship between DPP and RD theory. We observe that the upper bound of the diversity of data selected by DPP has a universal trend of $\textit{phase transition}$, which suggests that DPP is beneficial only at the beginning of sample accumulation. This led to the design of a bi-modal method, where RD-DPP is used in the first mode to select initial data samples, then classification inconsistency (as an uncertainty measure) is used to select the subsequent samples in the second mode. This phase transition solves the limitation to the rank of the similarity matrix. Applying our method to six different datasets and five benchmark models suggests that our method consistently outperforms random selection, DPP-based methods, and alternatives like uncertainty-based and coreset methods under all sampling budgets, while exhibiting high generalizability to different learning tasks.
Machine learning classification problems are widespread in bioinformatics, but the technical knowledge required to perform model training, optimization, and inference can prevent researchers from utilizing this technology. This article presents an automated tool for machine learning classification problems to simplify the process of training models and producing results while providing informative visualizations and insights into the data. This tool supports both binary and multiclass classification problems, and it provides access to a variety of models and methods. Synthetic data can be generated within the interface to fill missing values, balance class labels, or generate entirely new datasets. It also provides support for feature evaluation and generates explainability scores to indicate which features influence the output the most. We present CLASSify, an open-source tool for simplifying the user experience of solving classification problems without the need for knowledge of machine learning.
Multimodal learning models have become increasingly important as they surpass single-modality approaches on diverse tasks ranging from question-answering to autonomous driving. Despite the importance of multimodal learning, existing efforts focus on NLP applications, where the number of modalities is typically less than four (audio, video, text, images). However, data inputs in other domains, such as the medical field, may include X-rays, PET scans, MRIs, genetic screening, clinical notes, and more, creating a need for both efficient and accurate information fusion. Many state-of-the-art models rely on pairwise cross-modal attention, which does not scale well for applications with more than three modalities. For $n$ modalities, computing attention will result in $n \choose 2$ operations, potentially requiring considerable amounts of computational resources. To address this, we propose a new domain-neutral attention mechanism, One-Versus-Others (OvO) attention, that scales linearly with the number of modalities and requires only $n$ attention operations, thus offering a significant reduction in computational complexity compared to existing cross-modal attention algorithms. Using three diverse real-world datasets as well as an additional simulation experiment, we show that our method improves performance compared to popular fusion techniques while decreasing computation costs.
Continual learning allows a model to learn multiple tasks sequentially while retaining the old knowledge without the training data of the preceding tasks. This paper extends the scope of continual learning research to class-incremental learning for multiple object tracking (MOT), which is desirable to accommodate the continuously evolving needs of autonomous systems. Previous solutions for continual learning of object detectors do not address the data association stage of appearance-based trackers, leading to catastrophic forgetting of previous classes' re-identification features. We introduce COOLer, a COntrastive- and cOntinual-Learning-based tracker, which incrementally learns to track new categories while preserving past knowledge by training on a combination of currently available ground truth labels and pseudo-labels generated by the past tracker. To further exacerbate the disentanglement of instance representations, we introduce a novel contrastive class-incremental instance representation learning technique. Finally, we propose a practical evaluation protocol for continual learning for MOT and conduct experiments on the BDD100K and SHIFT datasets. Experimental results demonstrate that COOLer continually learns while effectively addressing catastrophic forgetting of both tracking and detection. The code is available at //github.com/BoSmallEar/COOLer.
The multivariate Hawkes process (MHP) is widely used for analyzing data streams that interact with each other, where events generate new events within their own dimension (via self-excitation) or across different dimensions (via cross-excitation). However, in certain applications, the timestamps of individual events in some dimensions are unobservable, and only event counts within intervals are known, referred to as partially interval-censored data. The MHP is unsuitable for handling such data since its estimation requires event timestamps. In this study, we introduce the Partial Mean Behavior Poisson (PMBP) process, a novel point process which shares parameter equivalence with the MHP and can effectively model both timestamped and interval-censored data. We demonstrate the capabilities of the PMBP process using synthetic and real-world datasets. Firstly, we illustrate that the PMBP process can approximate MHP parameters and recover the spectral radius using synthetic event histories. Next, we assess the performance of the PMBP process in predicting YouTube popularity and find that it surpasses state-of-the-art methods. Lastly, we leverage the PMBP process to gain qualitative insights from a dataset comprising daily COVID-19 case counts from multiple countries and COVID-19-related news articles. By clustering the PMBP-modeled countries, we unveil hidden interaction patterns between occurrences of COVID-19 cases and news reporting.
The use of deep learning methods to automatically detect students' classroom behavior is a promising approach for analyzing their class performance and improving teaching effectiveness. However, the lack of publicly available datasets on student behavior poses a challenge for researchers in this field. To address this issue, we propose the Student Classroom Behavior dataset (SCB-dataset3), which represents real-life scenarios. Our dataset comprises 5686 images with 45578 labels, focusing on six behaviors: hand-raising, reading, writing, using a phone, bowing the head, and leaning over the table. We evaluated the dataset using the YOLOv5, YOLOv7, and YOLOv8 algorithms, achieving a mean average precision (map) of up to 80.3$\%$. We believe that our dataset can serve as a robust foundation for future research in student behavior detection and contribute to advancements in this field. Our SCB-dataset3 is available for download at: //github.com/Whiffe/SCB-dataset
Although a few approaches are proposed to convert relational databases to graphs, there is a genuine lack of systematic evaluation across a wider spectrum of databases. Recognising the important issue of query mapping, this paper proposes an approach Rel2Graph, an automatic knowledge graph construction (KGC) approach from an arbitrary number of relational databases. Our approach also supports the mapping of conjunctive SQL queries into pattern-based NoSQL queries. We evaluate our proposed approach on two widely used relational database-oriented datasets: Spider and KaggleDBQA benchmarks for semantic parsing. We employ the execution accuracy (EA) metric to quantify the proportion of results by executing the NoSQL queries on the property knowledge graph we construct that aligns with the results of SQL queries performed on relational databases. Consequently, the counterpart property knowledge graph of benchmarks with high accuracy and integrity can be ensured. The code and data will be publicly available. The code and data are available at github\footnote{//github.com/nlp-tlp/Rel2Graph}.
Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.
Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.