Gradient-based learning in multi-layer neural networks displays a number of striking features. In particular, the decrease rate of empirical risk is non-monotone even after averaging over large batches. Long plateaus in which one observes barely any progress alternate with intervals of rapid decrease. These successive phases of learning often take place on very different time scales. Finally, models learnt in an early phase are typically `simpler' or `easier to learn' although in a way that is difficult to formalize. Although theoretical explanations of these phenomena have been put forward, each of them captures at best certain specific regimes. In this paper, we study the gradient flow dynamics of a wide two-layer neural network in high-dimension, when data are distributed according to a single-index model (i.e., the target function depends on a one-dimensional projection of the covariates). Based on a mixture of new rigorous results, non-rigorous mathematical derivations, and numerical simulations, we propose a scenario for the learning dynamics in this setting. In particular, the proposed evolution exhibits separation of timescales and intermittency. These behaviors arise naturally because the population gradient flow can be recast as a singularly perturbed dynamical system.
Recurrent neural networks (RNNs) notoriously struggle to learn long-term memories, primarily due to vanishing and exploding gradients. The recent success of state-space models (SSMs), a subclass of RNNs, to overcome such difficulties challenges our theoretical understanding. In this paper, we delve into the optimization challenges of RNNs and discover that, as the memory of a network increases, changes in its parameters result in increasingly large output variations, making gradient-based learning highly sensitive, even without exploding gradients. Our analysis further reveals the importance of the element-wise recurrence design pattern combined with careful parametrizations in mitigating this effect. This feature is present in SSMs, as well as in other architectures, such as LSTMs. Overall, our insights provide a new explanation for some of the difficulties in gradient-based learning of RNNs and why some architectures perform better than others.
Networked datasets are often enriched by different types of information about individual nodes or edges. However, most existing methods for analyzing such datasets struggle to handle the complexity of heterogeneous data, often requiring substantial model-specific analysis. In this paper, we develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of information. Our approach employs a Bayesian framework combined with the Laplace matching technique to ease interpretation of inferred parameters. Furthermore, the algorithmic implementation relies on automatic differentiation, avoiding the need for explicit derivations. This makes our model scalable and flexible to adapt to any combination of input data. We demonstrate the effectiveness of our method in detecting overlapping community structures and performing various prediction tasks on heterogeneous multilayer data, where nodes and edges have different types of attributes. Additionally, we showcase its ability to unveil a variety of patterns in a social support network among villagers in rural India by effectively utilizing all input information in a meaningful way.
Robotic exploration has long captivated researchers aiming to map complex environments efficiently. Techniques such as potential fields and frontier exploration have traditionally been employed in this pursuit, primarily focusing on solitary agents. Recent advancements have shifted towards optimizing exploration efficiency through multiagent systems. However, many existing approaches overlook critical real-world factors, such as broadcast range limitations, communication costs, and coverage overlap. This paper addresses these gaps by proposing a distributed maze exploration strategy (CU-LVP) that assumes constrained broadcast ranges and utilizes Voronoi diagrams for better area partitioning. By adapting traditional multiagent methods to distributed environments with limited broadcast ranges, this study evaluates their performance across diverse maze topologies, demonstrating the efficacy and practical applicability of the proposed method. The code and experimental results supporting this study are available in the following repository: //github.com/manouslinard/multiagent-exploration/.
We propose a semiparametric model for dyadic link formations in directed networks. The model contains a set of degree parameters that measure different effects of popularity or outgoingness across nodes, a regression parameter vector that reflects the homophily effect resulting from the nodal attributes or pairwise covariates associated with edges, and a set of latent random noises with unknown distributions. Our interest lies in inferring the unknown degree parameters and homophily parameters. The dimension of the degree parameters increases with the number of nodes. Under the high-dimensional regime, we develop a kernel-based least squares approach to estimate the unknown parameters. The major advantage of our estimator is that it does not encounter the incidental parameter problem for the homophily parameters. We prove consistency of all the resulting estimators of the degree parameters and homophily parameters. We establish high-dimensional central limit theorems for the proposed estimators and provide several applications of our general theory, including testing the existence of degree heterogeneity, testing sparse signals and recovering the support. Simulation studies and a real data application are conducted to illustrate the finite sample performance of the proposed methods.
Within distributed learning, workers typically compute gradients on their assigned dataset chunks and send them to the parameter server (PS), which aggregates them to compute either an exact or approximate version of $\nabla L$ (gradient of the loss function $L$). However, in large-scale clusters, many workers are slower than their promised speed or even failure-prone. A gradient coding solution introduces redundancy within the assignment of chunks to the workers and uses coding theoretic ideas to allow the PS to recover $\nabla L$ (exactly or approximately), even in the presence of stragglers. Unfortunately, most existing gradient coding protocols are inefficient from a computation perspective as they coarsely classify workers as operational or failed; the potentially valuable work performed by slow workers (partial stragglers) is ignored. In this work, we present novel gradient coding protocols that judiciously leverage the work performed by partial stragglers. Our protocols are efficient from a computation and communication perspective and numerically stable. For an important class of chunk assignments, we present efficient algorithms for optimizing the relative ordering of chunks within the workers; this ordering affects the overall execution time. For exact gradient reconstruction, our protocol is around $2\times$ faster than the original class of protocols and for approximate gradient reconstruction, the mean-squared-error of our reconstructed gradient is several orders of magnitude better.
Reinforcement learning is commonly concerned with problems of maximizing accumulated rewards in Markov decision processes. Oftentimes, a certain goal state or a subset of the state space attain maximal reward. In such a case, the environment may be considered solved when the goal is reached. Whereas numerous techniques, learning or non-learning based, exist for solving environments, doing so optimally is the biggest challenge. Say, one may choose a reward rate which penalizes the action effort. Reinforcement learning is currently among the most actively developed frameworks for solving environments optimally by virtue of maximizing accumulated reward, in other words, returns. Yet, tuning agents is a notoriously hard task as reported in a series of works. Our aim here is to help the agent learn a near-optimal policy efficiently while ensuring a goal reaching property of some basis policy that merely solves the environment. We suggest an algorithm, which is fairly flexible, and can be used to augment practically any agent as long as it comprises of a critic. A formal proof of a goal reaching property is provided. Simulation experiments on six problems under five agents, including the benchmarked one, provided an empirical evidence that the learning can indeed be boosted while ensuring goal reaching property.
Distributionally robust optimization has emerged as an attractive way to train robust machine learning models, capturing data uncertainty and distribution shifts. Recent statistical analyses have proved that robust models built from Wasserstein ambiguity sets have nice generalization guarantees, breaking the curse of dimensionality. However, these results are obtained in specific cases, at the cost of approximations, or under assumptions difficult to verify in practice. In contrast, we establish, in this article, exact generalization guarantees that cover all practical cases, including any transport cost function and any loss function, potentially non-convex and nonsmooth. For instance, our result applies to deep learning, without requiring restrictive assumptions. We achieve this result through a novel proof technique that combines nonsmooth analysis rationale with classical concentration results. Our approach is general enough to extend to the recent versions of Wasserstein/Sinkhorn distributionally robust problems that involve (double) regularizations.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.