亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the realm of cost-sharing mechanisms, the vulnerability to Sybil strategies -- also known as false-name strategies, where agents create fake identities to manipulate outcomes -- has not yet been studied. In this paper, we delve into the details of different cost-sharing mechanisms proposed in the literature, highlighting their non-Sybil-resistant nature. Furthermore, we prove that a Sybil-proof cost-sharing mechanism for public excludable goods under mild conditions is at least $(n+1)/2-$approximate. This finding reveals an exponential increase in the worst-case social cost in environments where agents are restricted from using Sybil strategies. To circumvent these negative results, we introduce the concept of \textit{Sybil Welfare Invariant} mechanisms, where a mechanism does not decrease its welfare under Sybil-strategies when agents choose weak dominant strategies and have subjective prior beliefs over other players' actions. Finally, we prove that the Shapley value mechanism for symmetric and submodular cost functions holds this property, and so deduce that the worst-case social cost of this mechanism is the $n$th harmonic number $\mathcal H_n$ under equilibrium with Sybil strategies, matching the worst-case social cost bound for cost-sharing mechanisms. This finding suggests that any group of agents, each with private valuations, can fund public excludable goods both permissionless and anonymously, achieving efficiency comparable to that of permissioned and non-anonymous domains, even when the total number of participants is unknown.

相關內容

As ChatGPT possesses powerful capabilities in natural language processing and code analysis, it has received widespread attention since its launch. Developers have applied its powerful capabilities to various domains through software projects which are hosted on the largest open-source platform (GitHub) worldwide. Simultaneously, these projects have triggered extensive discussions. In order to comprehend the research content of these projects and understand the potential requirements discussed, we collected ChatGPT-related projects from the GitHub platform and utilized the LDA topic model to identify the discussion topics. Specifically, we selected 200 projects, categorizing them into three primary categories through analyzing their descriptions: ChatGPT implementation & training, ChatGPT application, ChatGPT improvement & extension. Subsequently, we employed the LDA topic model to identify 10 topics from issue texts, and compared the distribution and evolution trend of the discovered topics within the three primary project categories. Our observations include (1) The number of projects growing in a single month for the three primary project categories are closely associated with the development of ChatGPT. (2) There exist significant variations in the popularity of each topic for the three primary project categories. (3) The monthly changes in the absolute impact of each topic for the three primary project categories are diverse, which is often closely associated with the variation in the number of projects owned by that category. (4) With the passage of time, the relative impact of each topic exhibits different development trends in the three primary project categories. Based on these findings, we discuss implications for developers and users.

In this manuscript, we study the stability of the origin for the multivariate geometric Brownian motion. More precisely, under suitable sufficient conditions, we construct a Lyapunov function such that the origin of the multivariate geometric Brownian motion is globally asymptotically stable in probability. Moreover, we show that such conditions can be rewritten as a Bilinear Matrix Inequality (BMI) feasibility problem. We stress that no commutativity relations between the drift matrix and the noise dispersion matrices are assumed and therefore the so-called Magnus representation of the solution of the multivariate geometric Brownian motion is complicated. In addition, we exemplify our method in numerous specific models from the literature such as random linear oscillators, satellite dynamics, inertia systems, diagonal noise systems, cancer self-remission and smoking.

Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the $I^2$ statistic is most commonly used. In this paper, we first illustrate with a simple example that the $I^2$ statistic is heavily dependent on the study sample sizes, mainly because it is used to quantify the heterogeneity between the observed effect sizes. To reduce the influence of sample sizes, we introduce an alternative measure that aims to directly measure the heterogeneity between the study populations involved in the meta-analysis. We further propose a new estimator, namely the $I_A^2$ statistic, to estimate the newly defined measure of heterogeneity. For practical implementation, the exact formulas of the $I_A^2$ statistic are also derived under two common scenarios with the effect size as the mean difference (MD) or the standardized mean difference (SMD). Simulations and real data analysis demonstrate that the $I_A^2$ statistic provides an asymptotically unbiased estimator for the absolute heterogeneity between the study populations, and it is also independent of the study sample sizes as expected. To conclude, our newly defined $I_A^2$ statistic can be used as a supplemental measure of heterogeneity to monitor the situations where the study effect sizes are indeed similar with little biological difference. In such scenario, the fixed-effect model can be appropriate; nevertheless, when the sample sizes are sufficiently large, the $I^2$ statistic may still increase to 1 and subsequently suggest the random-effects model for meta-analysis.

A procedure for asymptotic bias reduction of maximum likelihood estimates of generic estimands is developed. The estimator is realized as a plug-in estimator, where the parameter maximizes the penalized likelihood with a penalty function that satisfies a quasi-linear partial differential equation of the first order. The integration of the partial differential equation with the aid of differential geometry is discussed. Applications to generalized linear models, linear mixed-effects models, and a location-scale family are presented.

We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.

In the search for highly efficient decoders for short LDPC codes approaching maximum likelihood performance, a relayed decoding strategy, specifically activating the ordered statistics decoding process upon failure of a neural min-sum decoder, is enhanced by instilling three innovations. Firstly, soft information gathered at each step of the neural min-sum decoder is leveraged to forge a new reliability measure using a convolutional neural network. This measure aids in constructing the most reliable basis of ordered statistics decoding, bolstering the decoding process by excluding error-prone bits or concentrating them in a smaller area. Secondly, an adaptive ordered statistics decoding process is introduced, guided by a derived decoding path comprising prioritized blocks, each containing distinct test error patterns. The priority of these blocks is determined from the statistical data during the query phase. Furthermore, effective complexity management methods are devised by adjusting the decoding path's length or refining constraints on the involved blocks. Thirdly, a simple auxiliary criterion is introduced to reduce computational complexity by minimizing the number of candidate codewords before selecting the optimal estimate. Extensive experimental results and complexity analysis strongly support the proposed framework, demonstrating its advantages in terms of high throughput, low complexity, independence from noise variance, in addition to superior decoding performance.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

Entropy conditions play a crucial role in the extraction of a physically relevant solution for a system of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Recently, third-order WENO schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.

北京阿比特科技有限公司