Detecting and exploiting similarities between seemingly distant objects is without doubt an important human ability. This paper develops \textit{from the ground up} an abstract algebraic and qualitative justification-based notion of similarity based on the observation that sets of generalizations encode important properties of elements. We show that similarity defined in this way has appealing mathematical properties. As we construct our notion of similarity from first principles using only elementary concepts of universal algebra, to convince the reader of its plausibility, we show that it can be naturally embedded into first-order logic via model-theoretic types.
Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.
This article presents factor copula approaches to model temporal dependency of non- Gaussian (continuous/discrete) longitudinal data. Factor copula models are canonical vine copulas which explain the underlying dependence structure of a multivariate data through latent variables, and therefore can be easily interpreted and implemented to unbalanced longitudinal data. We develop regression models for continuous, binary and ordinal longitudinal data including covariates, by using factor copula constructions with subject-specific latent variables. Considering homogeneous within-subject dependence, our proposed models allow for feasible parametric inference in moderate to high dimensional situations, using two-stage (IFM) estimation method. We assess the finite sample performance of the proposed models with extensive simulation studies. In the empirical analysis, the proposed models are applied for analysing different longitudinal responses of two real world data sets. Moreover, we compare the performances of these models with some widely used random effect models using standard model selection techniques and find substantial improvements. Our studies suggest that factor copula models can be good alternatives to random effect models and can provide better insights to temporal dependency of longitudinal data of arbitrary nature.
This paper develops a flexible and computationally efficient multivariate volatility model, which allows for dynamic conditional correlations and volatility spillover effects among financial assets. The new model has desirable properties such as identifiability and computational tractability for many assets. A sufficient condition of the strict stationarity is derived for the new process. Two quasi-maximum likelihood estimation methods are proposed for the new model with and without low-rank constraints on the coefficient matrices respectively, and the asymptotic properties for both estimators are established. Moreover, a Bayesian information criterion with selection consistency is developed for order selection, and the testing for volatility spillover effects is carefully discussed. The finite sample performance of the proposed methods is evaluated in simulation studies for small and moderate dimensions. The usefulness of the new model and its inference tools is illustrated by two empirical examples for 5 stock markets and 17 industry portfolios, respectively.
Accurate modeling of moving boundaries and interfaces is a difficulty present in many situations of computational mechanics. We use the eXtreme Mesh deformation approach (X-Mesh) to simulate the interaction between two immiscible flows using the finite element method, while maintaining an accurate and sharp description of the interface without remeshing. In this new approach, the mesh is locally deformed to conform to the interface at all times, which can result in degenerated elements. The surface tension between the two fluids is added by imposing the pressure jump condition at the interface, which, when combined with the X-Mesh framework, allows us to have an exactly sharp interface. If a numerical scheme fails to properly balance surface tension and pressure gradients, it leads to numerical artefacts called spurious or parasitic currents. The method presented here is well balanced and reduces such currents down to the level of machine precision.
SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.
In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.
Diffusion models have recently emerged as a promising framework for Image Restoration (IR), owing to their ability to produce high-quality reconstructions and their compatibility with established methods. Existing methods for solving noisy inverse problems in IR, considers the pixel-wise data-fidelity. In this paper, we propose SaFaRI, a spatial-and-frequency-aware diffusion model for IR with Gaussian noise. Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality. We comprehensively evaluate the performance of our model on a variety of noisy inverse problems, including inpainting, denoising, and super-resolution. Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets, outperforming existing zero-shot IR methods in terms of LPIPS and FID metrics.
In this paper, a direct finite element method is proposed for solving interface problems on simple unfitted meshes. The fact that the two interface conditions form a $H^{\frac12}(\Gamma)\times H^{-\frac12}(\Gamma)$ pair leads to a simple and direct weak formulation with an integral term for the mutual interaction over the interface, and the well-posedness of this weak formulation is proved. Based on this formulation, a direct finite element method is proposed to solve the problem on two adjacent subdomains separated by the interface by conforming finite element and conforming mixed finite element, respectively. The well-posedness and an optimal a priori analysis are proved for this direct finite element method under some reasonable assumptions. A simple lowest order direct finite element method by using the linear element method and the lowest order Raviart-Thomas element method is proposed and analyzed to admit the optimal a priori error estimate by verifying the aforementioned assumptions. Numerical tests are also conducted to verify the theoretical results and the effectiveness of the direct finite element method.
Analysis of geospatial data has traditionally been model-based, with a mean model, customarily specified as a linear regression on the covariates, and a covariance model, encoding the spatial dependence. We relax the strong assumption of linearity and propose embedding neural networks directly within the traditional geostatistical models to accommodate non-linear mean functions while retaining all other advantages including use of Gaussian Processes to explicitly model the spatial covariance, enabling inference on the covariate effect through the mean and on the spatial dependence through the covariance, and offering predictions at new locations via kriging. We propose NN-GLS, a new neural network estimation algorithm for the non-linear mean in GP models that explicitly accounts for the spatial covariance through generalized least squares (GLS), the same loss used in the linear case. We show that NN-GLS admits a representation as a special type of graph neural network (GNN). This connection facilitates use of standard neural network computational techniques for irregular geospatial data, enabling novel and scalable mini-batching, backpropagation, and kriging schemes. Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes. To our knowledge this is the first asymptotic consistency result for any neural network algorithm for spatial data. We demonstrate the methodology through simulated and real datasets.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.