We present polynomial-time SDP-based algorithms for the following problem: For fixed $k \leq \ell$, given a real number $\epsilon>0$ and a graph $G$ that admits a $k$-colouring with a $\rho$-fraction of the edges coloured properly, it returns an $\ell$-colouring of $G$ with an $(\alpha \rho - \epsilon)$-fraction of the edges coloured properly in polynomial time in $G$ and $1 / \epsilon$. Our algorithms are based on the algorithms of Frieze and Jerrum [Algorithmica'97] and of Karger, Motwani and Sudan [JACM'98]. For $k = 2, \ell = 3$, our algorithm achieves an approximation ratio $\alpha = 1$, which is the best possible. When $k$ is fixed and $\ell$ grows large, our algorithm achieves an approximation ratio of $\alpha = 1 - o(1 / \ell)$. When $k, \ell$ are both large, our algorithm achieves an approximation ratio of $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell) - O(1 / k^2)$; if we fix $d = \ell - k$ and allow $k, \ell$ to grow large, this is $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell)$. By extending the results of Khot, Kindler, Mossel and O'Donnell [SICOMP'07] to the promise setting, we show that for large $k$ and $\ell$, assuming the Unique Games Conjecture, it is \NP-hard to achieve an approximation ratio $\alpha$ greater than $1 - 1 / \ell + 2 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided that $\ell$ is bounded by a function that is $o(\exp(\sqrt[3]{k}))$. For the case where $d = \ell - k$ is fixed, this bound matches the performance of our algorithm up to $o(\ln \ell / k \ell)$.
Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of $\lambda$-terms has been broadly used as a tool to approximate the terms of several variants of the $\lambda$-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its B\"ohm tree. This led us to consider extending this formalism to the infinitary $\lambda$-calculus, since the $\Lambda_{\infty}^{001}$ version of this calculus has B\"ohm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of $\Lambda_{\infty}^{001}$. We define a Taylor expansion on this calculus, and state that the infinitary $\beta$-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary $\lambda$-calculus.
A walk $u_0u_1 \ldots u_{k-1}u_k$ is a \textit{weakly toll walk} if $u_0u_i \in E(G)$ implies $u_i = u_1$ and $u_ju_k\in E(G)$ implies $u_j=u_{k-1}$. A set $S$ of vertices of $G$ is {\it weakly toll convex} if for any two non-adjacent vertices $x,y \in S$ any vertex in a weakly toll walk between $x$ and $y$ is also in $S$. The {\em weakly toll convexity} is the graph convexity space defined over weakly toll convex sets. Many studies are devoted to determine if a graph equipped with a convexity space is a {\em convex geometry}. An \emph{extreme vertex} is an element $x$ of a convex set $S$ such that the set $S\backslash\{x\}$ is also convex. A graph convexity space is said to be a convex geometry if it satisfies the Minkowski-Krein-Milman property, which states that every convex set is the convex hull of its extreme vertices. It is known that chordal, Ptolemaic, weakly polarizable, and interval graphs can be characterized as convex geometries with respect to the monophonic, geodesic, $m^3$, and toll convexities, respectively. Other important classes of graphs can also be characterized in this way. In this paper, we prove that a graph is a convex geometry with respect to the weakly toll convexity if and only if it is a proper interval graph. Furthermore, some well-known graph invariants are studied with respect to the weakly toll convexity.
Reidl, S\'anchez Villaamil, and Stravopoulos (2019) characterized graph classes of bounded expansion as follows: A class $\mathcal{C}$ closed under subgraphs has bounded expansion if and only if there exists a function $f:\mathbb{N} \to \mathbb{N}$ such that for every graph $G \in \mathcal{C}$, every nonempty subset $A$ of vertices in $G$ and every nonnegative integer $r$, the number of distinct intersections between $A$ and a ball of radius $r$ in $G$ is at most $f(r) |A|$. When $\mathcal{C}$ has bounded expansion, the function $f(r)$ coming from existing proofs is typically exponential. In the special case of planar graphs, it was conjectured by Soko{\l}owski (2021) that $f(r)$ could be taken to be a polynomial. In this paper, we prove this conjecture: For every nonempty subset $A$ of vertices in a planar graph $G$ and every nonnegative integer $r$, the number of distinct intersections between $A$ and a ball of radius $r$ in $G$ is $O(r^4 |A|)$. We also show that a polynomial bound holds more generally for every proper minor-closed class of graphs.
We show that the cohomology of the Regge complex in three dimensions is isomorphic to $\mathcal{H}^{{\scriptscriptstyle \bullet}}_{dR}(\Omega)\otimes\mathcal{RM}$, the infinitesimal-rigid-body-motion-valued de~Rham cohomology. Based on an observation that the twisted de~Rham complex extends the elasticity (Riemannian deformation) complex to the linearized version of coframes, connection 1-forms, curvature and Cartan's torsion, we construct a discrete version of linearized Riemann-Cartan geometry on any triangulation and determine its cohomology.
By incorporating a new matrix splitting and the momentum acceleration into the relaxed-based matrix splitting (RMS) method \cite{soso2023}, a generalization of the RMS (GRMS) iterative method for solving the generalized absolute value equations (GAVEs) is proposed. Unlike some existing methods, by using the Cauchy's convergence principle, we give some sufficient conditions for the existence and uniqueness of the solution to the GAVEs and prove that our method can converge to the unique solution of the GAVEs. Moreover, we can obtain a few new and weaker convergence conditions for some existing methods. Preliminary numerical experiments show that the proposed method is efficient.
We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.
In this paper, a new two-relaxation-time regularized (TRT-R) lattice Boltzmann (LB) model for convection-diffusion equation (CDE) with variable coefficients is proposed. Within this framework, we first derive a TRT-R collision operator by constructing a new regularized procedure through the high-order Hermite expansion of non-equilibrium. Then a first-order discrete-velocity form of discrete source term is introduced to improve the accuracy of the source term. Finally and most importantly, a new first-order space-derivative auxiliary term is proposed to recover the correct CDE with variable coefficients. To evaluate this model, we simulate a classic benchmark problem of the rotating Gaussian pulse. The results show that our model has better accuracy, stability and convergence than other popular LB models, especially in the case of a large time step.
We present algorithms for the computation of $\varepsilon$-coresets for $k$-median clustering of point sequences in $\mathbb{R}^d$ under the $p$-dynamic time warping (DTW) distance. Coresets under DTW have not been investigated before, and the analysis is not directly accessible to existing methods as DTW is not a metric. The three main ingredients that allow our construction of coresets are the adaptation of the $\varepsilon$-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations to the range spaces of balls under DTW, and new approximation algorithms for the $k$-median problem under DTW. We achieve our results by investigating approximations of DTW that provide a trade-off between the provided accuracy and amenability to known techniques. In particular, we observe that given $n$ curves under DTW, one can directly construct a metric that approximates DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The resulting approximations are the first with polynomial running time and achieve a very similar approximation factor as state-of-the-art techniques. We apply our results to produce a practical algorithm approximating $(k,\ell)$-median clustering under DTW.
The existence of $q$-ary linear complementary pairs (LCPs) of codes with $q> 2$ has been completely characterized so far. This paper gives a characterization for the existence of binary LCPs of codes. As a result, we solve an open problem proposed by Carlet $et~al.$ (IEEE Trans. Inf. Theory 65(3): 1694-1704, 2019) and a conjecture proposed by Choi $et~al.$ (Cryptogr. Commun. 15(2): 469-486, 2023).
In 2009, Shur published the following conjecture: Let $L$ be a power-free language and let $e(L)\subseteq L$ be the set of words of $L$ that can be extended to a bi-infinite word respecting the given power-freeness. If $u, v \in e(L)$ then $uwv \in e(L)$ for some word $w$. Let $L_{k,\alpha}$ denote an $\alpha$-power free language over an alphabet with $k$ letters, where $\alpha$ is a positive rational number and $k$ is positive integer. We prove the conjecture for the languages $L_{k,\alpha}$, where $\alpha\geq 5$ and $k\geq 3$.