Argument summarisation is a promising but currently under-explored field. Recent work has aimed to provide textual summaries in the form of concise and salient short texts, i.e., key points (KPs), in a task known as Key Point Analysis (KPA). One of the main challenges in KPA is finding high-quality key point candidates from dozens of arguments even in a small corpus. Furthermore, evaluating key points is crucial in ensuring that the automatically generated summaries are useful. Although automatic methods for evaluating summarisation have considerably advanced over the years, they mainly focus on sentence-level comparison, making it difficult to measure the quality of a summary (a set of KPs) as a whole. Aggravating this problem is the fact that human evaluation is costly and unreproducible. To address the above issues, we propose a two-step abstractive summarisation framework based on neural topic modelling with an iterative clustering procedure, to generate key points which are aligned with how humans identify key points. Our experiments show that our framework advances the state of the art in KPA, with performance improvement of up to 14 (absolute) percentage points, in terms of both ROUGE and our own proposed evaluation metrics. Furthermore, we evaluate the generated summaries using a novel set-based evaluation toolkit. Our quantitative analysis demonstrates the effectiveness of our proposed evaluation metrics in assessing the quality of generated KPs. Human evaluation further demonstrates the advantages of our approach and validates that our proposed evaluation metric is more consistent with human judgment than ROUGE scores.
Relation extraction (RE) is the task of extracting relations between entities in text. Most RE methods extract relations from free-form running text and leave out other rich data sources, such as tables. We explore RE from the perspective of applying neural methods on tabularly organized data. We introduce a new model consisting of Convolutional Neural Network (CNN) and Bidirectional-Long Short Term Memory (BiLSTM) network to encode entities and learn dependencies among them, respectively. We evaluate our model on a large and recent dataset and compare results with previous neural methods. Experimental results show that our model consistently outperforms the previous model for the task of relation extraction on tabular data. We perform comprehensive error analyses and ablation study to show the contribution of various components of our model. Finally, we discuss the usefulness and trade-offs of our approach, and provide suggestions for fostering further research.
This study explores the intricacies of waiting games, a novel dynamic that emerged with Ethereum's transition to a Proof-of-Stake (PoS)-based block proposer selection protocol. Within this PoS framework, validators acquire a distinct monopoly position during their assigned slots, given that block proposal rights are set deterministically, contrasting with Proof-of-Work (PoW) protocols. Consequently, validators have the power to delay block proposals, stepping outside the honest validator specs, optimizing potential returns through MEV payments. Nonetheless, this strategic behaviour introduces the risk of orphaning if attestors fail to observe and vote on the block timely. Our quantitative analysis of this waiting phenomenon and its associated risks reveals an opportunity for enhanced MEV extraction, exceeding standard protocol rewards, and providing sufficient incentives for validators to play the game. Notably, our findings indicate that delayed proposals do not always result in orphaning and orphaned blocks are not consistently proposed later than non-orphaned ones. To further examine consensus stability under varying network conditions, we adopt an agent-based simulation model tailored for PoS-Ethereum, illustrating that consensus disruption will not be observed unless significant delay strategies are adopted. Ultimately, this research offers valuable insights into the advent of waiting games on Ethereum, providing a comprehensive understanding of trade-offs and potential profits for validators within the blockchain ecosystem.
Along with the exponential growth of online platforms and services, recommendation systems have become essential for identifying relevant items based on user preferences. The domain of sequential recommendation aims to capture evolving user preferences over time. To address dynamic preference, various contrastive learning methods have been proposed to target data sparsity, a challenge in recommendation systems due to the limited user-item interactions. In this paper, we are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it. This approach ensures robust fine-tuning by merging the parameters of multiple models, resulting in improved overall performance. Through extensive experiments, we demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.