This study explores the intricacies of waiting games, a novel dynamic that emerged with Ethereum's transition to a Proof-of-Stake (PoS)-based block proposer selection protocol. Within this PoS framework, validators acquire a distinct monopoly position during their assigned slots, given that block proposal rights are set deterministically, contrasting with Proof-of-Work (PoW) protocols. Consequently, validators have the power to delay block proposals, stepping outside the honest validator specs, optimizing potential returns through MEV payments. Nonetheless, this strategic behaviour introduces the risk of orphaning if attestors fail to observe and vote on the block timely. Our quantitative analysis of this waiting phenomenon and its associated risks reveals an opportunity for enhanced MEV extraction, exceeding standard protocol rewards, and providing sufficient incentives for validators to play the game. Notably, our findings indicate that delayed proposals do not always result in orphaning and orphaned blocks are not consistently proposed later than non-orphaned ones. To further examine consensus stability under varying network conditions, we adopt an agent-based simulation model tailored for PoS-Ethereum, illustrating that consensus disruption will not be observed unless significant delay strategies are adopted. Ultimately, this research offers valuable insights into the advent of waiting games on Ethereum, providing a comprehensive understanding of trade-offs and potential profits for validators within the blockchain ecosystem.
Mentions of new concepts appear regularly in texts and require automated approaches to harvest and place them into Knowledge Bases (KB), e.g., ontologies and taxonomies. Existing datasets suffer from three issues, (i) mostly assuming that a new concept is pre-discovered and cannot support out-of-KB mention discovery; (ii) only using the concept label as the input along with the KB and thus lacking the contexts of a concept label; and (iii) mostly focusing on concept placement w.r.t a taxonomy of atomic concepts, instead of complex concepts, i.e., with logical operators. To address these issues, we propose a new benchmark, adapting MedMentions dataset (PubMed abstracts) with SNOMED CT versions in 2014 and 2017 under the Diseases sub-category and the broader categories of Clinical finding, Procedure, and Pharmaceutical / biologic product. We provide usage on the evaluation with the dataset for out-of-KB mention discovery and concept placement, adapting recent Large Language Model based methods.
BRCA genes, comprising BRCA1 and BRCA2 play indispensable roles in preserving genomic stability and facilitating DNA repair mechanisms. The presence of germline mutations in these genes has been associated with increased susceptibility to various cancers, notably breast and ovarian cancers. Recent advancements in cost-effective sequencing technologies have revolutionized the landscape of cancer genomics, leading to a notable rise in the number of sequenced cancer patient genomes, enabling large-scale computational studies. In this study, we delve into the BRCA mutations in the dbSNP, housing an extensive repository of 41,177 and 44,205 genetic mutations for BRCA1 and BRCA2, respectively. Employing meticulous computational analysis from an umbrella perspective, our research unveils intriguing findings pertaining to a number of critical aspects. Namely, we discover that the majority of BRCA mutations in dbSNP have unknown clinical significance. We find that, although exon 11 for both genes contains the majority of the mutations and may seem as if it is a mutation hot spot, upon analyzing mutations per base pair, we find that all exons exhibit similar levels of mutations. Investigating mutations within introns, while we observe that the recorded mutations are generally uniformly distributed, almost all of the pathogenic mutations in introns are located close to splicing regions (at the beginning or the end). In addition to the findings mentioned earlier, we have also made other discoveries concerning mutation types and the level of confidence in observations within the dbSNP database.
Large Language Models (LLM) have become sophisticated enough that complex computer programs can be created through interpretation of plain English sentences and implemented in a variety of modern languages such as Python, Java Script, C++ and Spreadsheets. These tools are powerful and relatively accurate and therefore provide broad access to computer programming regardless of the background or knowledge of the individual using them. This paper presents a series of experiments with ChatGPT to explore the tool's ability to produce valid spreadsheet formulae and related computational outputs in situations where ChatGPT has to deduce, infer and problem solve the answer. The results show that in certain circumstances, ChatGPT can produce correct spreadsheet formulae with correct reasoning, deduction and inference. However, when information is limited, uncertain or the problem is too complex, the accuracy of ChatGPT breaks down as does its ability to reason, infer and deduce. This can also result in false statements and "hallucinations" that all subvert the process of creating spreadsheet formulae.
We present EMDB, the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild. EMDB is a novel dataset that contains high-quality 3D SMPL pose and shape parameters with global body and camera trajectories for in-the-wild videos. We use body-worn, wireless electromagnetic (EM) sensors and a hand-held iPhone to record a total of 58 minutes of motion data, distributed over 81 indoor and outdoor sequences and 10 participants. Together with accurate body poses and shapes, we also provide global camera poses and body root trajectories. To construct EMDB, we propose a multi-stage optimization procedure, which first fits SMPL to the 6-DoF EM measurements and then refines the poses via image observations. To achieve high-quality results, we leverage a neural implicit avatar model to reconstruct detailed human surface geometry and appearance, which allows for improved alignment and smoothness via a dense pixel-level objective. Our evaluations, conducted with a multi-view volumetric capture system, indicate that EMDB has an expected accuracy of 2.3 cm positional and 10.6 degrees angular error, surpassing the accuracy of previous in-the-wild datasets. We evaluate existing state-of-the-art monocular RGB methods for camera-relative and global pose estimation on EMDB. EMDB is publicly available under //ait.ethz.ch/emdb
We present the Multi-Modal Discussion Transformer (mDT), a novel multi-modal graph-based transformer model for detecting hate speech in online social networks, such as Reddit discussions. In contrast to traditional comment-only methods, our approach to labelling a comment as hate speech involves a holistic analysis of text and images grounded in the discussion context. This is done by leveraging graph transformers to capture the contextual relationships in the entire discussion surrounding a comment and grounding the interwoven fusion layers that combine individual comments' text and image embeddings instead of processing modalities separately. We compare the performance of our model to baselines that only process individual comments and conduct extensive ablation studies. To evaluate our work, we present a new dataset, HatefulDiscussions, comprising complete multi-modal discussions from multiple online communities on Reddit. We conclude with future work for multimodal solutions to deliver social value in online contexts, arguing that capturing a holistic view of a conversation significantly advances the effort to detect anti-social behaviour.
Data catalogs play a crucial role in modern data-driven organizations by facilitating the discovery, understanding, and utilization of diverse data assets. However, ensuring their quality and reliability is complex, especially in open and large-scale data environments. This paper proposes a framework to automatically determine the quality of open data catalogs, addressing the need for efficient and reliable quality assessment mechanisms. Our framework can analyze various core quality dimensions, such as accuracy, completeness, consistency, scalability, and timeliness, offer several alternatives for the assessment of compatibility and similarity across such catalogs as well as the implementation of a set of non-core quality dimensions such as provenance, readability, and licensing. The goal is to empower data-driven organizations to make informed decisions based on trustworthy and well-curated data assets. The source code that illustrates our approach can be downloaded from //www.github.com/jorge-martinez-gil/dataq/.
Purpose: In this paper, we present an automated method for article classification, leveraging the power of Large Language Models (LLM). The primary focus is on the field of ophthalmology, but the model is extendable to other fields. Methods: We have developed a model based on Natural Language Processing (NLP) techniques, including advanced LLMs, to process and analyze the textual content of scientific papers. Specifically, we have employed zero-shot learning (ZSL) LLM models and compared against Bidirectional and Auto-Regressive Transformers (BART) and its variants, and Bidirectional Encoder Representations from Transformers (BERT), and its variant such as distilBERT, SciBERT, PubmedBERT, BioBERT. Results: The classification results demonstrate the effectiveness of LLMs in categorizing large number of ophthalmology papers without human intervention. Results: To evalute the LLMs, we compiled a dataset (RenD) of 1000 ocular disease-related articles, which were expertly annotated by a panel of six specialists into 15 distinct categories. The model achieved mean accuracy of 0.86 and mean F1 of 0.85 based on the RenD dataset. Conclusion: The proposed framework achieves notable improvements in both accuracy and efficiency. Its application in the domain of ophthalmology showcases its potential for knowledge organization and retrieval in other domains too. We performed trend analysis that enables the researchers and clinicians to easily categorize and retrieve relevant papers, saving time and effort in literature review and information gathering as well as identification of emerging scientific trends within different disciplines. Moreover, the extendibility of the model to other scientific fields broadens its impact in facilitating research and trend analysis across diverse disciplines.
The aim of Machine Unlearning (MU) is to provide theoretical guarantees on the removal of the contribution of a given data point from a training procedure. Federated Unlearning (FU) consists in extending MU to unlearn a given client's contribution from a federated training routine. Current FU approaches are generally not scalable, and do not come with sound theoretical quantification of the effectiveness of unlearning. In this work we present Informed Federated Unlearning (IFU), a novel efficient and quantifiable FU approach. Upon unlearning request from a given client, IFU identifies the optimal FL iteration from which FL has to be reinitialized, with unlearning guarantees obtained through a randomized perturbation mechanism. The theory of IFU is also extended to account for sequential unlearning requests. Experimental results on different tasks and dataset show that IFU leads to more efficient unlearning procedures as compared to basic re-training and state-of-the-art FU approaches.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.