We present EMDB, the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild. EMDB is a novel dataset that contains high-quality 3D SMPL pose and shape parameters with global body and camera trajectories for in-the-wild videos. We use body-worn, wireless electromagnetic (EM) sensors and a hand-held iPhone to record a total of 58 minutes of motion data, distributed over 81 indoor and outdoor sequences and 10 participants. Together with accurate body poses and shapes, we also provide global camera poses and body root trajectories. To construct EMDB, we propose a multi-stage optimization procedure, which first fits SMPL to the 6-DoF EM measurements and then refines the poses via image observations. To achieve high-quality results, we leverage a neural implicit avatar model to reconstruct detailed human surface geometry and appearance, which allows for improved alignment and smoothness via a dense pixel-level objective. Our evaluations, conducted with a multi-view volumetric capture system, indicate that EMDB has an expected accuracy of 2.3 cm positional and 10.6 degrees angular error, surpassing the accuracy of previous in-the-wild datasets. We evaluate existing state-of-the-art monocular RGB methods for camera-relative and global pose estimation on EMDB. EMDB is publicly available under //ait.ethz.ch/emdb
Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing.
Recognizing vulnerability is crucial for understanding and implementing targeted support to empower individuals in need. This is especially important at the European Court of Human Rights (ECtHR), where the court adapts Convention standards to meet actual individual needs and thus ensures effective human rights protection. However, the concept of vulnerability remains elusive at the ECtHR and no prior NLP research has dealt with it. To enable future research in this area, we present VECHR, a novel expert-annotated multi-label dataset comprising of vulnerability type classification and explanation rationale. We benchmark the performance of state-of-the-art models on VECHR from both prediction and explainability perspectives. Our results demonstrate the challenging nature of the task with lower prediction performance and limited agreement between models and experts. Further, we analyze the robustness of these models in dealing with out-of-domain (OOD) data and observe overall limited performance. Our dataset poses unique challenges offering significant room for improvement regarding performance, explainability, and robustness.
Increasingly larger datasets have become a standard ingredient to advancing the state-of-the-art in NLP. However, data quality might have already become the bottleneck to unlock further gains. Given the diversity and the sizes of modern datasets, standard data filtering is not straight-forward to apply, because of the multifacetedness of the harmful data and elusiveness of filtering rules that would generalize across multiple tasks. We study the fitness of task-agnostic self-influence scores of training examples for data cleaning, analyze their efficacy in capturing naturally occurring outliers, and investigate to what extent self-influence based data cleaning can improve downstream performance in machine translation, question answering and text classification, building up on recent approaches to self-influence calculation and automated curriculum learning.
Vision Transformers (ViTs) are becoming more popular and dominating technique for various vision tasks, compare to Convolutional Neural Networks (CNNs). As a demanding technique in computer vision, ViTs have been successfully solved various vision problems while focusing on long-range relationships. In this paper, we begin by introducing the fundamental concepts and background of the self-attention mechanism. Next, we provide a comprehensive overview of recent top-performing ViT methods describing in terms of strength and weakness, computational cost as well as training and testing dataset. We thoroughly compare the performance of various ViT algorithms and most representative CNN methods on popular benchmark datasets. Finally, we explore some limitations with insightful observations and provide further research direction. The project page along with the collections of papers are available at //github.com/khawar512/ViT-Survey
Controlling the False Discovery Rate (FDR) in a variable selection procedure is critical for reproducible discoveries, and it has been extensively studied in sparse linear models. However, it remains largely open in scenarios where the sparsity constraint is not directly imposed on the parameters but on a linear transformation of the parameters to be estimated. Examples of such scenarios include total variations, wavelet transforms, fused LASSO, and trend filtering. In this paper, we propose a data-adaptive FDR control method, called the Split Knockoff method, for this transformational sparsity setting. The proposed method exploits both variable and data splitting. The linear transformation constraint is relaxed to its Euclidean proximity in a lifted parameter space, which yields an orthogonal design that enables the orthogonal Split Knockoff construction. To overcome the challenge that exchangeability fails due to the heterogeneous noise brought by the transformation, new inverse supermartingale structures are developed via data splitting for provable FDR control without sacrificing power. Simulation experiments demonstrate that the proposed methodology achieves the desired FDR and power. We also provide an application to Alzheimer's Disease study, where atrophy brain regions and their abnormal connections can be discovered based on a structural Magnetic Resonance Imaging dataset (ADNI).
This paper aims to develop an efficient open-source Secure Multi-Party Computation (SMPC) repository, that addresses the issue of practical and scalable implementation of SMPC protocol on machines with moderate computational resources, while aiming to reduce the execution time. We implement the ABY2.0 protocol for SMPC, providing developers with effective tools for building applications on the ABY 2.0 protocol. This article addresses the limitations of the C++ based MOTION2NX framework for secure neural network inference, including memory constraints and operation compatibility issues. Our enhancements include optimizing the memory usage, reducing execution time using a third-party Helper node, and enhancing efficiency while still preserving data privacy. These optimizations enable MNIST dataset inference in just 32 seconds with only 0.2 GB of RAM for a 5-layer neural network. In contrast, the previous baseline implementation required 8.03 GB of RAM and 200 seconds of execution time.
Submarine cables constitute the backbone of the Internet. However, these critical infrastructure components are vulnerable to several natural and man-made threats, and during failures, are difficult to repair in their remote oceanic environments. In spite of their crucial role, we have a limited understanding of the impact of submarine cable failures on global connectivity, particularly on the higher layers of the Internet. In this paper, we present Nautilus, a framework for cross-layer cartography of submarine cables and IP links. Using a corpus of public datasets and Internet cartographic techniques, Nautilus identifies IP links that are likely traversing submarine cables and maps them to one or more potential cables. Nautilus also gives each IP to cable assignment a prediction score that reflects the confidence in the mapping. Nautilus generates a mapping for 3.05 million and 1.43 million IPv4 and IPv6 links respectively, covering 91% of all active cables. In the absence of ground truth data, we validate Nautilus mapping using three techniques: analyzing past cable failures, using targeted traceroute measurements, and comparing with public network maps of two operators.
Large Language Models (LLMs), like ChatGPT, are fundamentally tools trained on vast data, reflecting diverse societal impressions. This paper aims to investigate LLMs' self-perceived bias concerning indigeneity when simulating scenarios of indigenous people performing various roles. Through generating and analyzing multiple scenarios, this work offers a unique perspective on how technology perceives and potentially amplifies societal biases related to indigeneity in social computing. The findings offer insights into the broader implications of indigeneity in critical computing.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.