亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we take a new approach to constructing a universal sketch that focuses on a class of \emph{basis functions} $\{f_s(x)=1-\cos(sx)\mid s>0\}$, so that any $f$-moment can be estimated if $f$ can be expressed as a linear combination of basis functions. We construct and analyze the $\mathsf{SymmetricPoissonTower}$ sketch, which occupies $O(\epsilon^{-2}\log^2(nM\epsilon^{-1}))$ bits and is $\mathcal{F}$-universal for the function class $$\mathcal{F}= \left\{f(x)=cx^2+\int_0^\infty (1-\cos (xs))\,\nu(ds) \mid c\geq 0, \text{$\nu$ is a positive measure}\right\},$$ i.e., given any $f\in \mathcal{F}$, the new sketch $(1\pm\epsilon)$-estimates the $f$-moment with probability 2/3. The family $\mathcal{F}$ includes all the classic frequency moments ($f(z)=|z|^p$, $p\in [0,2]$) as well as a large family of nearly-periodic functions that cannot be estimated with $L_2$-heavy hitter machinery. This new approach to universality requires significantly less space in comparison to previous universal schemes and sheds new light on the full characterization of the class $\mathcal{T}$ of tractable functions.

相關內容

Given a Boolean function $f:\{0,1\}^n\to\{0,1\}$, the goal in the usual query model is to compute $f$ on an unknown input $x \in \{0,1\}^n$ while minimizing the number of queries to $x$. One can also consider a "distinguishing" problem denoted by $f_{\mathsf{sab}}$: given an input $x \in f^{-1}(0)$ and an input $y \in f^{-1}(1)$, either all differing locations are replaced by a $*$, or all differing locations are replaced by $\dagger$, and an algorithm's goal is to identify which of these is the case while minimizing the number of queries. Ben-David and Kothari [ToC'18] introduced the notion of randomized sabotage complexity of a Boolean function to be the zero-error randomized query complexity of $f_{\mathsf{sab}}$. A natural follow-up question is to understand $\mathsf{Q}(f_{\mathsf{sab}})$, the quantum query complexity of $f_{\mathsf{sab}}$. In this paper, we initiate a systematic study of this. The following are our main results: $\bullet\;\;$ If we have additional query access to $x$ and $y$, then $\mathsf{Q}(f_{\mathsf{sab}})=O(\min\{\mathsf{Q}(f),\sqrt{n}\})$. $\bullet\;\;$ If an algorithm is also required to output a differing index of a 0-input and a 1-input, then $\mathsf{Q}(f_{\mathsf{sab}})=O(\min\{\mathsf{Q}(f)^{1.5},\sqrt{n}\})$. $\bullet\;\;$ $\mathsf{Q}(f_{\mathsf{sab}}) = \Omega(\sqrt{\mathsf{fbs}(f)})$, where $\mathsf{fbs}(f)$ denotes the fractional block sensitivity of $f$. By known results, along with the results in the previous bullets, this implies that $\mathsf{Q}(f_{\mathsf{sab}})$ is polynomially related to $\mathsf{Q}(f)$. $\bullet\;\;$ The bound above is easily seen to be tight for standard functions such as And, Or, Majority and Parity. We show that when $f$ is the Indexing function, $\mathsf{Q}(f_{\mathsf{sab}})=\Theta(\mathsf{fbs}(f))$, ruling out the possibility that $\mathsf{Q}(f_{\mathsf{sab}})=\Theta(\sqrt{\mathsf{fbs}(f)})$ for all $f$.

We provide a perfect sampling algorithm for the hard-sphere model on subsets of $\mathbb{R}^d$ with expected running time linear in the volume under the assumption of strong spatial mixing. A large number of perfect and approximate sampling algorithms have been devised to sample from the hard-sphere model, and our perfect sampling algorithm is efficient for a range of parameters for which only efficient approximate samplers were previously known and is faster than these known approximate approaches. Our methods also extend to the more general setting of Gibbs point processes interacting via finite-range, repulsive potentials.

We give a simple algorithm for the dynamic approximate All-Pairs Shortest Paths (APSP) problem. Given a graph $G = (V, E, l)$ with polynomially bounded edge lengths, our data structure processes $|E|$ edge insertions and deletions in total time $|E|^{1 + o(1)}$ and provides query access to $|E|^{o(1)}$-approximate distances in time $\tilde{O}(1)$ per query. We produce a data structure that mimics Thorup-Zwick distance oracles [TZ'05], but is dynamic and deterministic. Our algorithm selects a small number of pivot vertices. Then, for every other vertex, it reduces distance computation to maintaining distances to a small neighborhood around that vertex and to the nearest pivot. We maintain distances between pivots efficiently by representing them in a smaller graph and recursing. We construct these smaller graphs by (a) reducing vertex count using the dynamic distance-preserving core graphs of Kyng-Meierhans-Probst Gutenberg [KMPG'24] in a black-box manner and (b) reducing edge-count using a dynamic spanner akin to Chen-Kyng-Liu-Meierhans-Probst Gutenberg [CKL+'24]. Our dynamic spanner internally uses an APSP data structure. Choosing a large enough size reduction factor in the first step allows us to simultaneously bootstrap our spanner and a dynamic APSP data structure. Notably, our approach does not need expander graphs, an otherwise ubiquitous tool in derandomization.

In streaming PCA, we see a stream of vectors $x_1, \dotsc, x_n \in \mathbb{R}^d$ and want to estimate the top eigenvector of their covariance matrix. This is easier if the spectral ratio $R = \lambda_1 / \lambda_2$ is large. We ask: how large does $R$ need to be to solve streaming PCA in $\widetilde{O}(d)$ space? Existing algorithms require $R = \widetilde{\Omega}(d)$. We show: (1) For all mergeable summaries, $R = \widetilde{\Omega}(\sqrt{d})$ is necessary. (2) In the insertion-only model, a variant of Oja's algorithm gets $o(1)$ error for $R = O(\log n \log d)$. (3) No algorithm with $o(d^2)$ space gets $o(1)$ error for $R = O(1)$. Our analysis is the first application of Oja's algorithm to adversarial streams. It is also the first algorithm for adversarial streaming PCA that is designed for a spectral, rather than Frobenius, bound on the tail; and the bound it needs is exponentially better than is possible by adapting a Frobenius guarantee.

We introduce the novel class $(E_\alpha)_{\alpha \in [-\infty,1)}$ of reverse map projection embeddings, each one defining a unique new method of encoding classical data into quantum states. Inspired by well-known map projections from the unit sphere onto its tangent planes, used in practice in cartography, these embeddings address the common drawback of the amplitude embedding method, wherein scalar multiples of data points are identified and information about the norm of data is lost. We show how reverse map projections can be utilised as equivariant embeddings for quantum machine learning. Using these methods, we can leverage symmetries in classical datasets to significantly strengthen performance on quantum machine learning tasks. Finally, we select four values of $\alpha$ with which to perform a simple classification task, taking $E_\alpha$ as the embedding and experimenting with both equivariant and non-equivariant setups. We compare their results alongside those of standard amplitude embedding.

The orthogonality dimension of a graph over $\mathbb{R}$ is the smallest integer $d$ for which one can assign to every vertex a nonzero vector in $\mathbb{R}^d$ such that every two adjacent vertices receive orthogonal vectors. For an integer $d$, the $d$-Ortho-Dim$_\mathbb{R}$ problem asks to decide whether the orthogonality dimension of a given graph over $\mathbb{R}$ is at most $d$. We prove that for every integer $d \geq 3$, the $d$-Ortho-Dim$_\mathbb{R}$ problem parameterized by the vertex cover number $k$ admits a kernel with $O(k^{d-1})$ vertices and bit-size $O(k^{d-1} \cdot \log k)$. We complement this result by a nearly matching lower bound, showing that for any $\varepsilon > 0$, the problem admits no kernel of bit-size $O(k^{d-1-\varepsilon})$ unless $\mathsf{NP} \subseteq \mathsf{coNP/poly}$. We further study the kernelizability of orthogonality dimension problems in additional settings, including over general fields and under various structural parameterizations.

We use a space-time discretization based on physics informed deep learning (PIDL) to approximate solutions of a class of rate-dependent strain gradient plasticity models. The differential equation governing the plastic flow, the so-called microforce balance for this class of yield-free plasticity models, is very stiff, often leading to numerical corruption and a consequent lack of accuracy or convergence by finite element (FE) methods. Indeed, setting up the discretized framework, especially with an elaborate meshing around the propagating plastic bands whose locations are often unknown a-priori, also scales up the computational effort significantly. Taking inspiration from physics informed neural networks, we modify the loss function of a PIDL model in several novel ways to account for the balance laws, either through energetics or via the resulting PDEs once a variational scheme is applied, and the constitutive equations. The initial and the boundary conditions may either be imposed strictly by encoding them within the PIDL architecture, or enforced weakly as a part of the loss function. The flexibility in the implementation of a PIDL technique often makes for its ready interface with powerful optimization schemes, and this in turn provides for many possibilities in posing the problem. We have used freely available open-source libraries that perform fast, parallel computations on GPUs. Using numerical illustrations, we demonstrate how PIDL methods could address the computational challenges posed by strain gradient plasticity models. Also, PIDL methods offer abundant potentialities, vis-\'a-vis a somewhat straitjacketed and poorer approximant of FE methods, in customizing the formulation as per the problem objective.

We consider the problem of linearizing a pseudo-Boolean function $f : \{0,1\}^n \to \mathbb{R}$ by means of $k$ Boolean functions. Such a linearization yields an integer linear programming formulation with only $k$ auxiliary variables. This motivates the definition of the linarization complexity of $f$ as the minimum such $k$. Our theoretical contributions are the proof that random polynomials almost surely have a high linearization complexity and characterizations of its value in case we do or do not restrict the set of admissible Boolean functions. The practical relevance is shown by devising and evaluating integer linear programming models of two such linearizations for the low auto-correlation binary sequences problem. Still, many problems around this new concept remain open.

Level set estimation (LSE), the problem of identifying the set of input points where a function takes value above (or below) a given threshold, is important in practical applications. When the function is expensive-to-evaluate and black-box, the \textit{straddle} algorithm, which is a representative heuristic for LSE based on Gaussian process models, and its extensions having theoretical guarantees have been developed. However, many of existing methods include a confidence parameter $\beta^{1/2}_t$ that must be specified by the user, and methods that choose $\beta^{1/2}_t$ heuristically do not provide theoretical guarantees. In contrast, theoretically guaranteed values of $\beta^{1/2}_t$ need to be increased depending on the number of iterations and candidate points, and are conservative and not good for practical performance. In this study, we propose a novel method, the \textit{randomized straddle} algorithm, in which $\beta_t$ in the straddle algorithm is replaced by a random sample from the chi-squared distribution with two degrees of freedom. The confidence parameter in the proposed method has the advantages of not needing adjustment, not depending on the number of iterations and candidate points, and not being conservative. Furthermore, we show that the proposed method has theoretical guarantees that depend on the sample complexity and the number of iterations. Finally, we confirm the usefulness of the proposed method through numerical experiments using synthetic and real data.

The implementation process of a $\texttt{RestrictedFunctionSpace}$ class in Firedrake, a Python library which numerically solves partial differential equations through the use of the finite element method, is documented. This includes an introduction to the current $\texttt{FunctionSpace}$ class in Firedrake, and the key features that it has. With the current $\texttt{FunctionSpace}$ class, the limitations of the capabilities of the solvers in Firedrake when imposing Dirichlet boundary conditions are explored, as well as what the $\texttt{RestrictedFunctionSpace}$ class does differently to remove these issues. These will be considered in both a mathematical way, and in the code as an abstraction of the mathematical ideas presented. Finally, the benefits to the user of the $\texttt{RestrictedFunctionSpace}$ class are considered, and demonstrated through tests and comparisons. This leads to the conclusion that in particular, the eigensolver in Firedrake is improved through the use of the $\texttt{RestrictedFunctionSpace}$, through the removal of eigenvalues associated with the Dirichlet boundary conditions for a system.

北京阿比特科技有限公司