亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a generalization of the optimal mass transport (OMT) approach of Benamou and Brenier's, the regularized optimal mass transport (rOMT) formulates a transport problem from an initial mass configuration to another with the optimality defined by the total kinetic energy, but subject to an advection-diffusion constraint equation. Both rOMT and the Benamou and Brenier's formulation require the total initial and final masses to be equal; mass is preserved during the entire transport process. However, for many applications, e.g., in dynamic image tracking, this constraint is rarely if ever satisfied. Therefore, we propose to employ an unbalanced version of rOMT to remove this constraint together with a detailed numerical solution procedure with applications to analyzing fluid flows in the brain.

相關內容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移動Ad hoc和傳(chuan)感器(qi)系統IEEE國際會議。 Publisher:IEEE。 SIT:

Force-aware grasping is an essential capability for most robots in practical applications. Especially for compliant grippers, such as Fin-Ray grippers, it still remains challenging to build a bidirectional mathematical model that mutually maps the shape deformation and contact force. Part I of this article has constructed the force-displacement relationship for design optimization through the co-rotational theory. In Part II, we further devise a displacement-force mathematical model, enabling the compliant gripper to precisely estimate contact force from deformations sensor-free. The presented displacement-force model elaborately investigates contact forces and provides force feedback for a force control system of a gripper, where deformation appears as displacements in contact points. Afterward, simulation experiments are conducted to evaluate the performance of the proposed model through comparisons with the finite-element analysis (FEA) in Ansys. Simulation results reveal that the proposed model accurately estimates contact force, with an average error of around 3% and 4% for single or multiple node cases, respectively, regardless of various design parameters (Part I of this article is released in Arxiv1)

The increasingly crowded spectrum has spurred the design of joint radar-communications systems that share hardware resources and efficiently use the radio frequency spectrum. We study a general spectral coexistence scenario, wherein the channels and transmit signals of both radar and communications systems are unknown at the receiver. In this dual-blind deconvolution (DBD) problem, a common receiver admits a multi-carrier wireless communications signal that is overlaid with the radar signal reflected off multiple targets. The communications and radar channels are represented by continuous-valued range-time and Doppler velocities of multiple transmission paths and multiple targets. We exploit the sparsity of both channels to solve the highly ill-posed DBD problem by casting it into a sum of multivariate atomic norms (SoMAN) minimization. We devise a semidefinite program to estimate the unknown target and communications parameters using the theories of positive-hyperoctant trigonometric polynomials (PhTP). Our theoretical analyses show that the minimum number of samples required for near-perfect recovery is dependent on the logarithm of the maximum of number of radar targets and communications paths rather than their sum. We show that our SoMAN method and PhTP formulations are also applicable to more general scenarios such as unsynchronized transmission, the presence of noise, and multiple emitters. Numerical experiments demonstrate great performance enhancements during parameter recovery under different scenarios.

We establish sparsity and summability results for coefficient sequences of Wiener-Hermite polynomial chaos expansions of countably-parametric solutions of linear elliptic and parabolic divergence-form partial differential equations with Gaussian random field inputs. The novel proof technique developed here is based on analytic continuation of parametric solutions into the complex domain. It differs from previous works that used bootstrap arguments and induction on the differentiation order of solution derivatives with respect to the parameters. The present holomorphy-based argument allows a unified, ``differentiation-free'' proof of sparsity (expressed in terms of $\ell^p$-summability or weighted $\ell^2$-summability) of sequences of Wiener-Hermite coefficients in polynomial chaos expansions in various scales of function spaces. The analysis also implies corresponding analyticity and sparsity results for posterior densities in Bayesian inverse problems subject to Gaussian priors on uncertain inputs from function spaces. Our results furthermore yield dimension-independent convergence rates of various \emph{constructive} high-dimensional deterministic numerical approximation schemes such as single-level and multi-level versions of Hermite-Smolyak anisotropic sparse-grid interpolation and quadrature in both forward and inverse computational uncertainty quantification.

To mitigate the growing carbon footprint of computing systems, there has been an increasing focus on carbon-aware approaches that seek to align the power usage of IT infrastructure with the availability of clean energy. Unfortunately, research on carbon-aware applications and the required interfaces between computing and energy systems remain complex, due to the scarcity of available testing environments. To this day, almost all new approaches are evaluated on self-implemented simulation testbeds, which leads to repeated development efforts by researchers and low comparability of approaches. In this paper, we present our vision of a co-simulation testbed for carbon-aware applications and systems. We envision a versatile testbed which lets users connect domain-specific simulators for components like renewable power generation, energy storage, and power flow analysis with real software and hardware. By providing extensibility on the one hand and access to state-of-the-art implementations, datasets, and best practices on the other, we hope to accelerate research in carbon-aware computing. In addition, a co-simulation testbed can be useful for development and operations, like in continuous testing. We implemented a first prototype of our idea and welcome the community to contribute to this vision.

Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical simulations in atmospheric modelling, improving their stability and convergence remains a substantial challenge for their application to operational models. In this work, we study the temporal parallelization of the shallow water equations on the rotating sphere combined with time-stepping schemes commonly used in atmospheric modelling due to their stability properties, namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method (SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, namely Parareal and Multigrid Reduction in Time (MGRIT), when these well-established schemes are used on the coarse discretization levels and provide insights on how they can be improved for better performance. We begin by performing an analytical stability study of Parareal and MGRIT applied to a linearized ordinary differential equation depending on the choice of coarse scheme. Next, we perform numerical simulations of two standard tests to evaluate the stability, convergence and speedup provided by the parallel-in-time methods compared to a fine reference solution computed serially. We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity approaches, applied on the coarse discretization levels, on the performance of the temporal parallelization. Both the analytical stability study and the numerical simulations indicate a poorer stability behaviour when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. With the IMEX scheme, a better trade-off between convergence, stability and speedup compared to serial simulations can be obtained under proper parameters and artificial viscosity choices, opening the perspective of the potential competitiveness for realistic models.

In this paper, we propose an opportunistic scheme for the transmission of model updates from Federated Learning (FL) clients to the server, where clients are wireless mobile users. This proposal aims to opportunistically take advantage of the proximity of users to the base station or the general condition of the wireless transmission channel, rather than traditional synchronous transmission. In this scheme, during the training, intermediate model parameters are uploaded to the server, opportunistically and based on the wireless channel condition. Then, the proactively-transmitted model updates are used for the global aggregation if the final local model updates are delayed. We apply this novel model transmission scheme to one of our previous work, which is a hybrid split and federated learning (HSFL) framework for UAVs. Simulation results confirm the superiority of using proactive transmission over the conventional asynchronous aggregation scheme for the staled model by obtaining higher accuracy and more stable training performance. Test accuracy increases by up to 13.47% with just one round of extra transmission.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司