Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking diferent trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To ill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Speciically, our irst model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at //github.com/Onedean/AttnTUL.
Training machine learning and statistical models often involves optimizing a data-driven risk criterion. The risk is usually computed with respect to the empirical data distribution, but this may result in poor and unstable out-of-sample performance due to distributional uncertainty. In the spirit of distributionally robust optimization, we propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet Process) theory and recent decision-theoretic models of smooth ambiguity-averse preferences. First, we highlight novel connections with standard regularized empirical risk minimization techniques, among which Ridge and LASSO regressions. Then, we theoretically demonstrate the existence of favorable finite-sample and asymptotic statistical guarantees on the performance of the robust optimization procedure. For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet Process representations. We also show that the smoothness of the criterion naturally leads to standard gradient-based numerical optimization. Finally, we provide insights into the workings of our method by applying it to high-dimensional sparse linear regression and robust location parameter estimation tasks.
Cross-domain sequential recommendation is an important development direction of recommender systems. It combines the characteristics of sequential recommender systems and cross-domain recommender systems, which can capture the dynamic preferences of users and alleviate the problem of cold-start users. However, in recent years, people pay more and more attention to their privacy. They do not want other people to know what they just bought, what videos they just watched, and where they just came from. How to protect the users' privacy has become an urgent problem to be solved. In this paper, we propose a novel privacy-preserving cross-domain sequential recommender system (PriCDSR), which can provide users with recommendation services while preserving their privacy at the same time. Specifically, we define a new differential privacy on the data, taking into account both the ID information and the order information. Then, we design a random mechanism that satisfies this differential privacy and provide its theoretical proof. Our PriCDSR is a non-invasive method that can adopt any cross-domain sequential recommender system as a base model without any modification to it. To the best of our knowledge, our PriCDSR is the first work to investigate privacy issues in cross-domain sequential recommender systems. We conduct experiments on three domains, and the results demonstrate that our PriCDSR, despite introducing noise, still outperforms recommender systems that only use data from a single domain.
Simulated Tempering (ST) is an MCMC algorithm for complex target distributions that operates on a path between the target and a more amenable reference distribution. Crucially, if the reference enables i.i.d. sampling, ST is regenerative and can be parallelized across independent tours. However, the difficulty of tuning ST has hindered its widespread adoption. In this work, we develop a simple nonreversible ST (NRST) algorithm, a general theoretical analysis of ST, and an automated tuning procedure for ST. A core contribution that arises from the analysis is a novel performance metric -- Tour Effectiveness (TE) -- that controls the asymptotic variance of estimates from ST for bounded test functions. We use the TE to show that NRST dominates its reversible counterpart. We then develop an automated tuning procedure for NRST algorithms that targets the TE while minimizing computational cost. This procedure enables straightforward integration of NRST into existing probabilistic programming languages. We provide extensive experimental evidence that our tuning scheme improves the performance and robustness of NRST algorithms on a diverse set of probabilistic models.
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference. One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels. However, its performance is significantly affected by noisy pseudo-labels. This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise. To address this issue, we propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation. First, we decouple the optimization of class prototypes. For each class prototype, we reduce its distance with positive samples and enlarge its distance with negative samples in a contrastive manner. This strategy prevents the model from overfitting to noisy pseudo-labels. Second, we propose a memory-based strategy to enhance DPL's robustness for the small batch sizes often encountered in TTA. We update each class's pseudo-feature from a memory in a momentum manner and insert an additional DPL loss. Finally, we introduce a consistency regularization-based approach to leverage samples with unconfident pseudo-labels. This approach transfers feature styles of samples with unconfident pseudo-labels to those with confident pseudo-labels. Thus, more reliable samples for TTA are created. The experimental results demonstrate that our methods achieve state-of-the-art performance on domain generalization benchmarks, and reliably improve the performance of self-training-based methods on image corruption benchmarks. The code will be released.
Federated Learning (FL) allows several clients to construct a common global machine-learning model without having to share their data. FL, however, faces the challenge of statistical heterogeneity between the client's data, which degrades performance and slows down the convergence toward the global model. In this paper, we provide theoretical proof that minimizing heterogeneity between clients facilitates the convergence of a global model for every single client. This becomes particularly important under empirical concept shifts among clients, rather than merely considering imbalanced classes, which have been studied until now. Therefore, we propose a method for knowledge transfer between clients where the server trains client-specific generators. Each generator generates samples for the corresponding client to remove the conflict with other clients' models. Experiments conducted on synthetic and real data, along with a theoretical study, support the effectiveness of our method in constructing a well-generalizable global model by reducing the conflict between local models.
Most few-shot learning works rely on the same domain assumption between the base and the target tasks, hindering their practical applications. This paper proposes an adaptive transformer network (ADAPTER), a simple but effective solution for cross-domain few-shot learning where there exist large domain shifts between the base task and the target task. ADAPTER is built upon the idea of bidirectional cross-attention to learn transferable features between the two domains. The proposed architecture is trained with DINO to produce diverse, and less biased features to avoid the supervision collapse problem. Furthermore, the label smoothing approach is proposed to improve the consistency and reliability of the predictions by also considering the predicted labels of the close samples in the embedding space. The performance of ADAPTER is rigorously evaluated in the BSCD-FSL benchmarks in which it outperforms prior arts with significant margins.
Numerical computation is essential to many areas of artificial intelligence (AI), whose computing demands continue to grow dramatically, yet their continued scaling is jeopardized by the slowdown in Moore's law. Multi-function multi-way analog (MFMWA) technology, a computing architecture comprising arrays of memristors supporting in-memory computation of matrix operations, can offer tremendous improvements in computation and energy, but at the expense of inherent unpredictability and noise. We devise novel randomized algorithms tailored to MFMWA architectures that mitigate the detrimental impact of imperfect analog computations while realizing their potential benefits across various areas of AI, such as applications in computer vision. Through analysis, measurements from analog devices, and simulations of larger systems, we demonstrate orders of magnitude reduction in both computation and energy with accuracy similar to digital computers.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.