亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exercise-based rehabilitation programs have proven to be effective in enhancing the quality of life and reducing mortality and rehospitalization rates. AI-driven virtual rehabilitation, which allows patients to independently complete exercises at home, utilizes AI algorithms to analyze exercise data, providing feedback to patients and updating clinicians on their progress. These programs commonly prescribe a variety of exercise types, leading to a distinct challenge in rehabilitation exercise assessment datasets: while abundant in overall training samples, these datasets often have a limited number of samples for each individual exercise type. This disparity hampers the ability of existing approaches to train generalizable models with such a small sample size per exercise. Addressing this issue, our paper introduces a novel supervised contrastive learning framework with hard and soft negative samples that effectively utilizes the entire dataset to train a single model applicable to all exercise types. This model, with a Spatial-Temporal Graph Convolutional Network (ST-GCN) architecture, demonstrated enhanced generalizability across exercises and a decrease in overall complexity. Through extensive experiments on three publicly available rehabilitation exercise assessment datasets, the University of Idaho-Physical Rehabilitation Movement Data (UI-PRMD), IntelliRehabDS (IRDS), and KInematic assessment of MOvement and clinical scores for remote monitoring of physical REhabilitation (KIMORE), our method has shown to surpass existing methods, setting a new benchmark in rehabilitation exercise assessment accuracy.

相關內容

Recent advances in large language models (LLMs) have blurred the boundary of high-quality text generation between humans and machines, which is favorable for generative text steganography. While, current advanced steganographic mapping is not suitable for LLMs since most users are restricted to accessing only the black-box API or user interface of the LLMs, thereby lacking access to the training vocabulary and its sampling probabilities. In this paper, we explore a black-box generative text steganographic method based on the user interfaces of large language models, which is called LLM-Stega. The main goal of LLM-Stega is that the secure covert communication between Alice (sender) and Bob (receiver) is conducted by using the user interfaces of LLMs. Specifically, We first construct a keyword set and design a new encrypted steganographic mapping to embed secret messages. Furthermore, to guarantee accurate extraction of secret messages and rich semantics of generated stego texts, an optimization mechanism based on reject sampling is proposed. Comprehensive experiments demonstrate that the proposed LLM-Stega outperforms current state-of-the-art methods.

Sparse variational approximations are popular methods for scaling up inference and learning in Gaussian processes to larger datasets. For $N$ training points, exact inference has $O(N^3)$ cost; with $M \ll N$ features, state of the art sparse variational methods have $O(NM^2)$ cost. Recently, methods have been proposed using more sophisticated features; these promise $O(M^3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used. In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary covariance functions. We motivate the method and choice of parameters from a convergence analysis and empirical exploration, and show practical speedup in synthetic and real world spatial regression tasks.

The accurate evaluation of differential treatment in language models to specific groups is critical to ensuring a positive and safe user experience. An ideal evaluation should have the properties of being robust, extendable to new groups or attributes, and being able to capture biases that appear in typical usage (rather than just extreme, rare cases). Relatedly, bias evaluation should surface not only egregious biases but also ones that are subtle and commonplace, such as a likelihood for talking about appearances with regard to women. We present FairPair, an evaluation framework for assessing differential treatment that occurs during ordinary usage. FairPair operates through counterfactual pairs, but crucially, the paired continuations are grounded in the same demographic group, which ensures equivalent comparison. Additionally, unlike prior work, our method factors in the inherent variability that comes from the generation process itself by measuring the sampling variability. We present an evaluation of several commonly used generative models and a qualitative analysis that indicates a preference for discussing family and hobbies with regard to women.

Learning from the collective knowledge of data dispersed across private sources can provide neural networks with enhanced generalization capabilities. Federated learning, a method for collaboratively training a machine learning model across remote clients, achieves this by combining client models via the orchestration of a central server. However, current approaches face two critical limitations: i) they struggle to converge when client domains are sufficiently different, and ii) current aggregation techniques produce an identical global model for each client. In this work, we address these issues by reformulating the typical federated learning setup: rather than learning a single global model, we learn N models each optimized for a common objective. To achieve this, we apply a weighted distance minimization to model parameters shared in a peer-to-peer topology. The resulting framework, Iterative Parameter Alignment, applies naturally to the cross-silo setting, and has the following properties: (i) a unique solution for each participant, with the option to globally converge each model in the federation, and (ii) an optional early-stopping mechanism to elicit fairness among peers in collaborative learning settings. These characteristics jointly provide a flexible new framework for iteratively learning from peer models trained on disparate datasets. We find that the technique achieves competitive results on a variety of data partitions compared to state-of-the-art approaches. Further, we show that the method is robust to divergent domains (i.e. disjoint classes across peers) where existing approaches struggle.

Posterior sampling allows exploitation of prior knowledge on the environment's transition dynamics to improve the sample efficiency of reinforcement learning. The prior is typically specified as a class of parametric distributions, the design of which can be cumbersome in practice, often resulting in the choice of uninformative priors. In this work, we propose a novel posterior sampling approach in which the prior is given as a (partial) causal graph over the environment's variables. The latter is often more natural to design, such as listing known causal dependencies between biometric features in a medical treatment study. Specifically, we propose a hierarchical Bayesian procedure, called C-PSRL, simultaneously learning the full causal graph at the higher level and the parameters of the resulting factored dynamics at the lower level. We provide an analysis of the Bayesian regret of C-PSRL that explicitly connects the regret rate with the degree of prior knowledge. Our numerical evaluation conducted in illustrative domains confirms that C-PSRL strongly improves the efficiency of posterior sampling with an uninformative prior while performing close to posterior sampling with the full causal graph.

Deep learning models are widely applied in the signal processing community, yet their inner working procedure is often treated as a black box. In this paper, we investigate the use of eXplainable Artificial Intelligence (XAI) techniques to learning-based end-to-end speech source localization models. We consider the Layer-wise Relevance Propagation (LRP) technique, which aims to determine which parts of the input are more important for the output prediction. Using LRP we analyze two state-of-the-art models, of differing architectural complexity that map audio signals acquired by the microphones to the cartesian coordinates of the source. Specifically, we inspect the relevance associated with the input features of the two models and discover that both networks denoise and de-reverberate the microphone signals to compute more accurate statistical correlations between them and consequently localize the sources. To further demonstrate this fact, we estimate the Time-Difference of Arrivals (TDoAs) via the Generalized Cross Correlation with Phase Transform (GCC-PHAT) using both microphone signals and relevance signals extracted from the two networks and show that through the latter we obtain more accurate time-delay estimation results.

The self-improving ability of large language models (LLMs), enabled by prompting them to analyze and revise their own outputs, has garnered significant interest in recent research. However, this ability has been shown to be absent and difficult to learn for smaller models, thus widening the performance gap between state-of-the-art LLMs and more cost-effective and faster ones. To reduce this gap, we introduce TriPosT, a training algorithm that endows smaller models with such self-improvement ability, and show that our approach can improve a LLaMA-7b's performance on math and reasoning tasks by up to 7.13%. In contrast to prior work, we achieve this by using the smaller model to interact with LLMs to collect feedback and improvements on its own generations. We then replay this experience to train the small model. Our experiments on four math and reasoning datasets show that the interactive experience of learning from and correcting its own mistakes is crucial for small models to improve their performance.

Many public policies and medical interventions involve dynamics in their treatment assignments, where treatments are sequentially assigned to the same individuals across multiple stages, and the effect of treatment at each stage is usually heterogeneous with respect to the history of prior treatments and associated characteristics. We study statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's history. We propose a step-wise doubly-robust approach to learn the optimal DTR using observational data under the assumption of sequential ignorability. The approach solves the sequential treatment assignment problem through backward induction, where, at each step, we combine estimators of propensity scores and action-value functions (Q-functions) to construct augmented inverse probability weighting estimators of values of policies for each stage. The approach consistently estimates the optimal DTR if either a propensity score or Q-function for each stage is consistently estimated. Furthermore, the resulting DTR can achieve the optimal convergence rate $n^{-1/2}$ of regret under mild conditions on the convergence rate for estimators of the nuisance parameters.

Improving mental health support in developing countries is a pressing need. One potential solution is the development of scalable, automated systems to conduct diagnostic screenings, which could help alleviate the burden on mental health professionals. In this work, we evaluate several state-of-the-art Large Language Models (LLMs), with and without fine-tuning, on our custom dataset for generating concise summaries from mental state examinations. We rigorously evaluate four different models for summary generation using established ROUGE metrics and input from human evaluators. The results highlight that our top-performing fine-tuned model outperforms existing models, achieving ROUGE-1 and ROUGE-L values of 0.810 and 0.764, respectively. Furthermore, we assessed the fine-tuned model's generalizability on a publicly available D4 dataset, and the outcomes were promising, indicating its potential applicability beyond our custom dataset.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司