亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To support the extremely high spectral efficiency and energy efficiency requirements, and emerging applications of future wireless communications, holographic multiple-input multiple-output (H-MIMO) technology is envisioned as one of the most promising enablers. It can potentially bring extra degrees-of-freedom for communications and signal processing, including spatial multiplexing in line-of-sight (LoS) channels and electromagnetic (EM) field processing performed using specialized devices, to attain the fundamental limits of wireless communications. In this context, EM-domain channel modeling is critical to harvest the benefits offered by H-MIMO. Existing EM-domain channel models are built based on the tensor Green function, which require prior knowledge of the global position and/or the relative distances and directions of the transmit/receive antenna elements. Such knowledge may be difficult to acquire in real-world applications due to extensive measurements needed for obtaining this data. To overcome this limitation, we propose a transmit-receive parameter separable channel model methodology in which the EM-domain (or holographic) channel can be simply acquired from the distance/direction measured between the center-points between the transmit and receive surfaces, and the local positions between the transmit and receive elements, thus avoiding extensive global parameter measurements. Analysis and numerical results showcase the effectiveness of the proposed channel modeling approach in approximating the H-MIMO channel, and achieving the theoretical channel capacity.

相關內容

The problems of Lasso regression and optimal design of experiments share a critical property: their optimal solutions are typically \emph{sparse}, i.e., only a small fraction of the optimal variables are non-zero. Therefore, the identification of the support of an optimal solution reduces the dimensionality of the problem and can yield a substantial simplification of the calculations. It has recently been shown that linear regression with a \emph{squared} $\ell_1$-norm sparsity-inducing penalty is equivalent to an optimal experimental design problem. In this work, we use this equivalence to derive safe screening rules that can be used to discard inessential samples. Compared to previously existing rules, the new tests are much faster to compute, especially for problems involving a parameter space of high dimension, and can be used dynamically within any iterative solver, with negligible computational overhead. Moreover, we show how an existing homotopy algorithm to compute the regularization path of the lasso method can be reparametrized with respect to the squared $\ell_1$-penalty. This allows the computation of a Bayes $c$-optimal design in a finite number of steps and can be several orders of magnitude faster than standard first-order algorithms. The efficiency of the new screening rules and of the homotopy algorithm are demonstrated on different examples based on real data.

There is a growing literature on design-based methods to estimate average treatment effects (ATEs) for randomized controlled trials (RCTs) for full sample analyses. This article extends these methods to estimate ATEs for discrete subgroups defined by pre-treatment variables, with an application to an RCT testing subgroup effects for a school voucher experiment in New York City. We consider ratio estimators for subgroup effects using regression methods, allowing for model covariates to improve precision, and prove a finite population central limit theorem. We discuss extensions to blocked and clustered RCT designs, and to other common estimators with random treatment-control sample sizes (or weights): post-stratification estimators, weighted estimators that adjust for data nonresponse, and estimators for Bernoulli trials. We also develop simple variance estimators that share features with robust estimators. Simulations show that the design-based subgroup estimators yield confidence interval coverage near nominal levels, even for small subgroups.

Robots must make and break contact with the environment to perform useful tasks, but planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver and present simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20-degree-of-freedom bi-manual manipulation task. Video and code are available at //idto.github.io.

We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation (MMLE) procedure to estimate the parameters of a latent variable model. We achieve this by formulating a continuous-time interacting particle system which can be seen as a Langevin diffusion over an extended state space of parameters and latent variables. In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure where number of particles acts as the inverse temperature parameter in classical settings for global optimisation. Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error in a manner that is uniform in time and does not increase with the number of particles. The discretisation results in an algorithm, termed Interacting Particle Langevin Algorithm (IPLA) which can be used for MMLE. We further prove nonasymptotic bounds for the optimisation error of our estimator in terms of key parameters of the problem, and also extend this result to the case of stochastic gradients covering practical scenarios. We provide numerical experiments to illustrate the empirical behaviour of our algorithm in the context of logistic regression with verifiable assumptions. Our setting provides a straightforward way to implement a diffusion-based optimisation routine compared to more classical approaches such as the Expectation Maximisation (EM) algorithm, and allows for especially explicit nonasymptotic bounds.

We consider a broadband over-the-air computation empowered model aggregation approach for wireless federated learning (FL) systems and propose to leverage an intelligent reflecting surface (IRS) to combat wireless fading and noise. We first investigate the conventional node-selection based framework, where a few edge nodes are dropped in model aggregation to control the aggregation error. We analyze the performance of this node-selection based framework and derive an upper bound on its performance loss, which is shown to be related to the selected edge nodes. Then, we seek to minimize the mean-squared error (MSE) between the desired global gradient parameters and the actually received ones by optimizing the selected edge nodes, their transmit equalization coefficients, the IRS phase shifts, and the receive factors of the cloud server. By resorting to the matrix lifting technique and difference-of-convex programming, we successfully transform the formulated optimization problem into a convex one and solve it using off-the-shelf solvers. To improve learning performance, we further propose a weight-selection based FL framework. In such a framework, we assign each edge node a proper weight coefficient in model aggregation instead of discarding any of them to reduce the aggregation error, i.e., amplitude alignment of the received local gradient parameters from different edge nodes is not required. We also analyze the performance of this weight-selection based framework and derive an upper bound on its performance loss, followed by minimizing the MSE via optimizing the weight coefficients of the edge nodes, their transmit equalization coefficients, the IRS phase shifts, and the receive factors of the cloud server. Furthermore, we use the MNIST dataset for simulations to evaluate the performance of both node-selection and weight-selection based FL frameworks.

Accelerated development of demand response service provision by the residential sector is crucial for reducing carbon-emissions in the power sector. Along with the infrastructure advancement, encouraging the end users to participate is crucial. End users highly value their privacy and control, and want to be included in the service design and decision-making process when creating the daily appliance operation schedules. Furthermore, unless they are financially or environmentally motivated, they are generally not prepared to sacrifice their comfort to help balance the power system. In this paper, we present an inverse-reinforcement-learning-based model that helps create the end users' daily appliance schedules without asking them to explicitly state their needs and wishes. By using their past consumption data, the end consumers will implicitly participate in the creation of those decisions and will thus be motivated to continue participating in the provision of demand response services.

Recently, advancements in deep learning-based superpixel segmentation methods have brought about improvements in both the efficiency and the performance of segmentation. However, a significant challenge remains in generating superpixels that strictly adhere to object boundaries while conveying rich visual significance, especially when cross-surface color correlations may interfere with objects. Drawing inspiration from neural structure and visual mechanisms, we propose a biological network architecture comprising an Enhanced Screening Module (ESM) and a novel Boundary-Aware Label (BAL) for superpixel segmentation. The ESM enhances semantic information by simulating the interactive projection mechanisms of the visual cortex. Additionally, the BAL emulates the spatial frequency characteristics of visual cortical cells to facilitate the generation of superpixels with strong boundary adherence. We demonstrate the effectiveness of our approach through evaluations on both the BSDS500 dataset and the NYUv2 dataset.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

北京阿比特科技有限公司