亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Do we live in a "Golden Age of Conspiracy Theories?" In the last few decades, conspiracy theories have proliferated on the Internet with some having dangerous real-world consequences. A large contingent of those who participated in the January 6th attack on the US Capitol fervently believed in the QAnon conspiracy theory. In this work, we study the relationships amongst five prominent conspiracy theories (QAnon, COVID, UFO/Aliens, 9/11, and Flat-Earth) and each of their respective relationships to the news media, both authentic news and misinformation. Identifying and publishing a set of 755 different conspiracy theory websites dedicated to our five conspiracy theories, we find that each set often hyperlinks to the same external domains, with COVID and QAnon conspiracy theory websites having the largest amount of shared connections. Examining the role of news media, we further find that not only do outlets known for spreading misinformation hyperlink to our set of conspiracy theory websites more often than authentic news websites but also that this hyperlinking increased dramatically between 2018 and 2021, with the advent of QAnon and the start of COVID-19 pandemic. Using partial Granger-causality, we uncover several positive correlative relationships between the hyperlinks from misinformation websites and the popularity of conspiracy theory websites, suggesting the prominent role that misinformation news outlets play in popularizing many conspiracy theories.

相關內容

In this work, we introduce SPFormer, a novel Vision Transformer enhanced by superpixel representation. Addressing the limitations of traditional Vision Transformers' fixed-size, non-adaptive patch partitioning, SPFormer employs superpixels that adapt to the image's content. This approach divides the image into irregular, semantically coherent regions, effectively capturing intricate details and applicable at both initial and intermediate feature levels. SPFormer, trainable end-to-end, exhibits superior performance across various benchmarks. Notably, it exhibits significant improvements on the challenging ImageNet benchmark, achieving a 1.4% increase over DeiT-T and 1.1% over DeiT-S respectively. A standout feature of SPFormer is its inherent explainability. The superpixel structure offers a window into the model's internal processes, providing valuable insights that enhance the model's interpretability. This level of clarity significantly improves SPFormer's robustness, particularly in challenging scenarios such as image rotations and occlusions, demonstrating its adaptability and resilience.

With the continued introduction of driverless events to Formula:Society of Automotive Engineers (F:SAE) competitions around the world, teams are investigating all aspects of the autonomous vehicle stack. This paper presents the use of Deep Reinforcement Learning (DRL) and Inverse Reinforcement Learning (IRL) to map locally-observed cone positions to a desired steering angle for race track following. Two state-of-the-art algorithms not previously tested in this context: soft actor critic (SAC) and adversarial inverse reinforcement learning (AIRL), are used to train models in a representative simulation. Three novel reward functions for use by RL algorithms in an autonomous racing context are also discussed. Tests performed in simulation and the real world suggest that both algorithms can successfully train models for local path following. Suggestions for future work are presented to allow these models to scale to a full F:SAE vehicle.

In the realm of computer systems, efficient utilisation of the CPU (Central Processing Unit) has always been a paramount concern. Researchers and engineers have long sought ways to optimise process execution on the CPU, leading to the emergence of CPU scheduling as a field of study. This research proposes a novel algorithm for batch processing that operates on a preemptive model, dynamically assigning priorities based on a robust ratio, employing a dynamic time slice, and utilising periodic sorting technique to achieve fairness. By engineering this responsive and fair model, the proposed algorithm strikes a delicate balance between efficiency and fairness, providing an optimised solution for batch scheduling while ensuring system responsiveness.

In this survey, we dive into Tabular Data Learning (TDL) using Graph Neural Networks (GNNs), a domain where deep learning-based approaches have increasingly shown superior performance in both classification and regression tasks compared to traditional methods. The survey highlights a critical gap in deep neural TDL methods: the underrepresentation of latent correlations among data instances and feature values. GNNs, with their innate capability to model intricate relationships and interactions between diverse elements of tabular data, have garnered significant interest and application across various TDL domains. Our survey provides a systematic review of the methods involved in designing and implementing GNNs for TDL (GNN4TDL). It encompasses a detailed investigation into the foundational aspects and an overview of GNN-based TDL methods, offering insights into their evolving landscape. We present a comprehensive taxonomy focused on constructing graph structures and representation learning within GNN-based TDL methods. In addition, the survey examines various training plans, emphasizing the integration of auxiliary tasks to enhance the effectiveness of instance representations. A critical part of our discussion is dedicated to the practical application of GNNs across a spectrum of GNN4TDL scenarios, demonstrating their versatility and impact. Lastly, we discuss the limitations and propose future research directions, aiming to spur advancements in GNN4TDL. This survey serves as a resource for researchers and practitioners, offering a thorough understanding of GNNs' role in revolutionizing TDL and pointing towards future innovations in this promising area.

As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a \textit{Trie-based Retrieval} (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a \textit{Verification and Accept} (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: //github.com/alipay/PainlessInferenceAcceleration.

The area of Machine Learning as a Service (MLaaS) is experiencing increased implementation due to recent advancements in the AI (Artificial Intelligence) industry. However, this spike has prompted concerns regarding AI defense mechanisms, specifically regarding potential covert attacks from third-party providers that cannot be entirely trusted. Recent research has uncovered that auditory backdoors may use certain modifications as their initiating mechanism. DynamicTrigger is introduced as a methodology for carrying out dynamic backdoor attacks that use cleverly designed tweaks to ensure that corrupted samples are indistinguishable from clean. By utilizing fluctuating signal sampling rates and masking speaker identities through dynamic sound triggers (such as the clapping of hands), it is possible to deceive speech recognition systems (ASR). Our empirical testing demonstrates that DynamicTrigger is both potent and stealthy, achieving impressive success rates during covert attacks while maintaining exceptional accuracy with non-poisoned datasets.

Autonomous vehicles (AVs) rely on the Global Positioning System (GPS) or Global Navigation Satellite Systems (GNSS) for precise (Positioning, Navigation, and Timing) PNT solutions. However, the vulnerability of GPS signals to intentional and unintended threats due to their lack of encryption and weak signal strength poses serious risks, thereby reducing the reliability of AVs. GPS spoofing is a complex and damaging attack that deceives AVs by altering GPS receivers to calculate false position and tracking information leading to misdirection. This study explores a stealthy slow drift GPS spoofing attack, replicating the victim AV's satellite reception pattern while changing pseudo ranges to deceive the AV, particularly during turns. The attack is designed to gradually deviate from the correct route, making real-time detection challenging and jeopardizing user safety. We present a system and study methodology for constructing covert spoofing attacks on AVs, investigating the correlation between original and spoofed pseudo ranges to create effective defenses. By closely following the victim vehicle and using the same satellite signals, the attacker executes the attack precisely. Changing the pseudo ranges confuses the AV, leading it to incorrect destinations while remaining oblivious to the manipulation. The gradual deviation from the actual route further conceals the attack, hindering its swift identification. The experiments showcase a robust correlation between the original and spoofed pseudo ranges, with R square values varying between 0.99 and 1. This strong correlation facilitates effective evaluation and mitigation of spoofing signals.

With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

北京阿比特科技有限公司