亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a stochastic method for efficiently computing the solution of time-fractional partial differential equations (fPDEs) that model anomalous diffusion problems of the subdiffusive type. After discretizing the fPDE in space, the ensuing system of fractional linear equations is solved resorting to a Monte Carlo evaluation of the corresponding Mittag-Leffler matrix function. This is accomplished through the approximation of the expected value of a suitable multiplicative functional of a stochastic process, which consists of a Markov chain whose sojourn times in every state are Mittag-Leffler distributed. The resulting algorithm is able to calculate the solution at conveniently chosen points in the domain with high efficiency. In addition, we present how to generalize this algorithm in order to compute the complete solution. For several large-scale numerical problems, our method showed remarkable performance in both shared-memory and distributed-memory systems, achieving nearly perfect scalability up to 16,384 CPU cores.

相關內容

We specialize techniques from topological data analysis to the problem of characterizing the topological complexity (as defined in the body of the paper) of a multi-class data set. As a by-product, a topological classifier is defined that uses an open sub-covering of the data set. This sub-covering can be used to construct a simplicial complex whose topological features (e.g., Betti numbers) provide information about the classification problem. We use these topological constructs to study the impact of topological complexity on learning in feedforward deep neural networks (DNNs). We hypothesize that topological complexity is negatively correlated with the ability of a fully connected feedforward deep neural network to learn to classify data correctly. We evaluate our topological classification algorithm on multiple constructed and open source data sets. We also validate our hypothesis regarding the relationship between topological complexity and learning in DNN's on multiple data sets.

We propose a functional accelerated failure time model to characterize effects of both functional and scalar covariates on the time to event of interest, and provide regularity conditions to guarantee model identifiability. For efficient estimation of model parameters, we develop a sieve maximum likelihood approach where parametric and nonparametric coefficients are bundled with an unknown baseline hazard function in the likelihood function. Not only do the bundled parameters cause immense numerical difficulties, but they also result in new challenges in theoretical development. By developing a general theoretical framework, we overcome the challenges arising from the bundled parameters and derive the convergence rate of the proposed estimator. Furthermore, we prove that the finite-dimensional estimator is $\sqrt{n}$-consistent, asymptotically normal and achieves the semiparametric information bound. The proposed inference procedures are evaluated by extensive simulation studies and illustrated with an application to the sequential organ failure assessment data from the Improving Care of Acute Lung Injury Patients study.

We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in //github.com/radarFudan/Curse-of-memory

Optimal transport (OT) barycenters are a mathematically grounded way of averaging probability distributions while capturing their geometric properties. In short, the barycenter task is to take the average of a collection of probability distributions w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our approach is built upon the dual reformulation of the EOT problem based on weak OT, which has recently gained the attention of the ML community. Beyond its novelty, our method enjoys several advantageous properties: (i) we establish quality bounds for the recovered solution; (ii) this approach seemlessly interconnects with the Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned algorithms for the problem of interest; (iii) it provides an intuitive optimization scheme avoiding min-max, reinforce and other intricate technical tricks. For validation, we consider several low-dimensional scenarios and image-space setups, including non-Euclidean cost functions. Furthermore, we investigate the practical task of learning the barycenter on an image manifold generated by a pretrained generative model, opening up new directions for real-world applications.

A confidence sequence (CS) is a sequence of confidence sets that contains a target parameter of an underlying stochastic process at any time step with high probability. This paper proposes a new approach to constructing CSs for means of bounded multivariate stochastic processes using a general gambling framework, extending the recently established coin toss framework for bounded random processes. The proposed gambling framework provides a general recipe for constructing CSs for categorical and probability-vector-valued observations, as well as for general bounded multidimensional observations through a simple reduction. This paper specifically explores the use of the mixture portfolio, akin to Cover's universal portfolio, in the proposed framework and investigates the properties of the resulting CSs. Simulations demonstrate the tightness of these confidence sequences compared to existing methods. When applied to the sampling without-replacement setting for finite categorical data, it is shown that the resulting CS based on a universal gambling strategy is provably tighter than that of the posterior-prior ratio martingale proposed by Waudby-Smith and Ramdas.

We present a novel graph transformer framework, HAMLET, designed to address the challenges in solving partial differential equations (PDEs) using neural networks. The framework uses graph transformers with modular input encoders to directly incorporate differential equation information into the solution process. This modularity enhances parameter correspondence control, making HAMLET adaptable to PDEs of arbitrary geometries and varied input formats. Notably, HAMLET scales effectively with increasing data complexity and noise, showcasing its robustness. HAMLET is not just tailored to a single type of physical simulation, but can be applied across various domains. Moreover, it boosts model resilience and performance, especially in scenarios with limited data. We demonstrate, through extensive experiments, that our framework is capable of outperforming current techniques for PDEs.

The least-squares ReLU neural network (LSNN) method was introduced and studied for solving linear advection-reaction equation with discontinuous solution in \cite{Cai2021linear,cai2023least}. The method is based on an equivalent least-squares formulation and employs ReLU neural network (NN) functions with $\lceil \log_2(d+1)\rceil+1$-layer representations for approximating solutions. In this paper, we show theoretically that the method is also capable of approximating non-constant jumps along discontinuous interfaces that are not necessarily straight lines. Numerical results for test problems with various non-constant jumps and interfaces show that the LSNN method with $\lceil \log_2(d+1)\rceil+1$ layers approximates solutions accurately with degrees of freedom less than that of mesh-based methods and without the common Gibbs phenomena along discontinuous interfaces.

We studied the least-squares ReLU neural network (LSNN) method for solving linear advection-reaction equation with discontinuous solution in [Cai, Zhiqiang, Jingshuang Chen, and Min Liu. ``Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation.'' Journal of Computational Physics 443 (2021), 110514]. The method is based on a least-squares formulation and uses a new class of approximating functions: ReLU neural network (NN) functions. A critical and additional component of the LSNN method, differing from other NN-based methods, is the introduction of a properly designed and physics preserved discrete differential operator. In this paper, we study the LSNN method for problems with discontinuity interfaces. First, we show that ReLU NN functions with depth $\lceil \log_2(d+1)\rceil+1$ can approximate any $d$-dimensional step function on a discontinuity interface generated by a vector field as streamlines with any prescribed accuracy. By decomposing the solution into continuous and discontinuous parts, we prove theoretically that discretization error of the LSNN method using ReLU NN functions with depth $\lceil \log_2(d+1)\rceil+1$ is mainly determined by the continuous part of the solution provided that the solution jump is constant. Numerical results for both two- and three-dimensional test problems with various discontinuity interfaces show that the LSNN method with enough layers is accurate and does not exhibit the common Gibbs phenomena along discontinuity interfaces.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司