亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Global seismicity on all three solar system's bodies with in situ measurements (Earth, Moon, and Mars) is due mainly to mechanical Rieger resonance (RR) of the solar wind's macroscopic flapping, driven by the well-known PRg=~154-day Rieger period and detected commonly in most heliophysical data types and the interplanetary magnetic field (IMF). Thus, InSight mission marsquakes rates are periodic with PRg as characterized by a very high (>>12) fidelity {\Phi}=2.8 10^6 and by being the only >99%-significant spectral peak in the 385.8-64.3-nHz (1-180-day) band of highest planetary energies; the longest-span (v.9) release of raw data revealed the entire RR, excluding a tectonically active Mars. For check, I analyze rates of Oct 2015-Feb 2019, Mw5.6+ earthquakes, and all (1969-1977) Apollo mission moonquakes. To decouple magnetosphere and IMF effects, I study Earth and Moon seismicity during traversals of Earth magnetotail vs. IMF. The analysis showed with >99-67% confidence and {\Phi}>>12 fidelity that (an unspecified majority of) moonquakes and Mw5.6+ earthquakes also recur at Rieger periods. About half of spectral peaks split but also into clusters that average to usual Rieger periodicities, where magnetotail reconnecting clears the signal. Moonquakes are mostly forced at times of solar-wind resonance and not just during tides, as previously and simplistically believed. Earlier claims that solar plasma dynamics could be seismogenic are confirmed. This result calls for reinterpreting the seismicity phenomenon and for reliance on global magnitude scales. Predictability of solar-wind macroscopic dynamics is now within reach, which paves the way for long-term physics-based seismic and space weather prediction and the safety of space missions. Gauss-Vanicek Spectral Analysis revolutionizes geophysics by computing nonlinear global dynamics directly (renders approximating of dynamics obsolete).

相關內容

The Laplace mechanism and the Gaussian mechanism are primary mechanisms in differential privacy, widely applicable to many scenarios involving numerical data. However, due to the infinite-range random variables they generate, the Laplace and Gaussian mechanisms may return values that are semantically impossible, such as negative numbers. To address this issue, we have designed the truncated Laplace mechanism and Gaussian mechanism. For a given truncation interval [a, b], the truncated Gaussian mechanism ensures the same Renyi Differential Privacy (RDP) as the untruncated mechanism, regardless of the values chosen for the truncation interval [a, b]. Similarly, the truncated Laplace mechanism, for specified interval [a, b], maintains the same RDP as the untruncated mechanism. We provide the RDP expressions for each of them. We believe that our study can further enhance the utility of differential privacy in specific applications.

Assouad-Nagata dimension addresses both large and small scale behaviors of metric spaces and is a refinement of Gromov's asymptotic dimension. A metric space $M$ is a minor-closed metric if there exists an (edge-)weighted graph $G$ satisfying a fixed minor-closed property such that the underlying space of $M$ is the vertex-set of $G$, and the metric of $M$ is the distance function in $G$. Minor-closed metrics naturally arise when removing redundant edges of the underlying graphs by using edge-deletion and edge-contraction. In this paper, we determine the Assouad-Nagata dimension of every minor-closed metric. It is a common generalization of known results about the asymptotic dimension of $H$-minor free unweighted graphs and about the Assouad-Nagata dimension of complete Riemannian surfaces with finite Euler genus and their corollaries.

Many mechanisms behind the evolution of cooperation, such as reciprocity, indirect reciprocity, and altruistic punishment, require group knowledge of individual actions. But what keeps people cooperating when no one is looking? Conformist norm internalization, the tendency to abide by the behavior of the majority of the group, even when it is individually harmful, could be the answer. In this paper, we analyze a world where (1) there is group selection and punishment by indirect reciprocity but (2) many actions (half) go unobserved, and therefore unpunished. Can norm internalization fill this "observation gap" and lead to high levels of cooperation, even when agents may in principle cooperate only when likely to be caught and punished? Specifically, we seek to understand whether adding norm internalization to the strategy space in a public goods game can lead to higher levels of cooperation when both norm internalization and cooperation start out rare. We found the answer to be positive, but, interestingly, not because norm internalizers end up making up a substantial fraction of the population, nor because they cooperate much more than other agent types. Instead, norm internalizers, by polarizing, catalyzing, and stabilizing cooperation, can increase levels of cooperation of other agent types, while only making up a minority of the population themselves.

We present a novel stabilized isogeometric formulation for the Stokes problem, where the geometry of interest is obtained via overlapping NURBS (non-uniform rational B-spline) patches, i.e., one patch on top of another in an arbitrary but predefined hierarchical order. All the visible regions constitute the computational domain, whereas independent patches are coupled through visible interfaces using Nitsche's formulation. Such a geometric representation inevitably involves trimming, which may yield trimmed elements of extremely small measures (referred to as bad elements) and thus lead to the instability issue. Motivated by the minimal stabilization method that rigorously guarantees stability for trimmed geometries [1], in this work we generalize it to the Stokes problem on overlapping patches. Central to our method is the distinct treatments for the pressure and velocity spaces: Stabilization for velocity is carried out for the flux terms on interfaces, whereas pressure is stabilized in all the bad elements. We provide a priori error estimates with a comprehensive theoretical study. Through a suite of numerical tests, we first show that optimal convergence rates are achieved, which consistently agrees with our theoretical findings. Second, we show that the accuracy of pressure is significantly improved by several orders using the proposed stabilization method, compared to the results without stabilization. Finally, we also demonstrate the flexibility and efficiency of the proposed method in capturing local features in the solution field.

Neuromorphic computing is one of the few current approaches that have the potential to significantly reduce power consumption in Machine Learning and Artificial Intelligence. Imam & Cleland presented an odour-learning algorithm that runs on a neuromorphic architecture and is inspired by circuits described in the mammalian olfactory bulb. They assess the algorithm's performance in "rapid online learning and identification" of gaseous odorants and odorless gases (short "gases") using a set of gas sensor recordings of different odour presentations and corrupting them by impulse noise. We replicated parts of the study and discovered limitations that affect some of the conclusions drawn. First, the dataset used suffers from sensor drift and a non-randomised measurement protocol, rendering it of limited use for odour identification benchmarks. Second, we found that the model is restricted in its ability to generalise over repeated presentations of the same gas. We demonstrate that the task the study refers to can be solved with a simple hash table approach, matching or exceeding the reported results in accuracy and runtime. Therefore, a validation of the model that goes beyond restoring a learned data sample remains to be shown, in particular its suitability to odour identification tasks.

Geographical and Temporal Weighted Regression (GTWR) model is an important local technique for exploring spatial heterogeneity in data relationships, as well as temporal dependence due to its high fitting capacity when it comes to real data. In this article, we consider a GTWR model driven by a spatio-temporal noise, colored in space and fractional in time. Concerning the covariates, we consider that they are correlated, taking into account two interaction types between covariates, weak and strong interaction. Under these assumptions, Weighted Least Squares Estimator (WLS) is obtained, as well as its rate of convergence. In order to evidence the good performance of the estimator studied, it is provided a simulation study of four different scenarios, where it is observed that the residuals oscillate with small variation around zero. The STARMA package of the R software allows obtaining a variant of the $R^{2}$ coefficient, with values very close to 1, which means that most of the variability is explained by the model.

The Mixup method has proven to be a powerful data augmentation technique in Computer Vision, with many successors that perform image mixing in a guided manner. One of the interesting research directions is transferring the underlying Mixup idea to other domains, e.g. Natural Language Processing (NLP). Even though there already exist several methods that apply Mixup to textual data, there is still room for new, improved approaches. In this work, we introduce AttentionMix, a novel mixing method that relies on attention-based information. While the paper focuses on the BERT attention mechanism, the proposed approach can be applied to generally any attention-based model. AttentionMix is evaluated on 3 standard sentiment classification datasets and in all three cases outperforms two benchmark approaches that utilize Mixup mechanism, as well as the vanilla BERT method. The results confirm that the attention-based information can be effectively used for data augmentation in the NLP domain.

The study further explores randomized QMC (RQMC), which maintains the QMC convergence rate and facilitates computational efficiency analysis. Emphasis is laid on integrating randomly shifted lattice rules, a distinct RQMC quadrature, with IS,a classic variance reduction technique. The study underscores the intricacies of establishing a theoretical convergence rate for IS in QMC compared to MC, given the influence of problem dimensions and smoothness on QMC. The research also touches on the significance of IS density selection and its potential implications. The study culminates in examining the error bound of IS with a randomly shifted lattice rule, drawing inspiration from the reproducing kernel Hilbert space (RKHS). In the realm of finance and statistics, many problems boil down to computing expectations, predominantly integrals concerning a Gaussian measure. This study considers optimal drift importance sampling (ODIS) and Laplace importance sampling (LapIS) as common importance densities. Conclusively, the paper establishes that under certain conditions, the IS-randomly shifted lattice rule can achieve a near $O(N^{-1})$ error bound.

A method of numerically solving the Maxwell equations is considered for modeling harmonic electromagnetic fields. The vector finite element method makes it possible to obtain a physically consistent discretization of the differential equations. However, solving large systems of linear algebraic equations with indefinite ill-conditioned matrices is a challenge. The high order of the matrices limits the capabilities of the Gaussian method to solve such systems, since this requires large RAM and much calculation. To reduce these requirements, an iterative preconditioned algorithm based on integral Laguerre transform in time is used. This approach allows using multigrid algorithms and, as a result, needs less RAM compared to the direct methods of solving systems of linear algebraic equations.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司