亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a fully-decentralized scenario in which no central trusted entity exists and all clients are honest-but-curious. The state-of-the-art approaches to this problem often rely on cryptographic protocols, such as multiparty computation (MPC), that require mapping real-valued data to a discrete alphabet, specifically a finite field. These approaches, however, can result in substantial accuracy losses due to computation overflows. To address this issue, we propose A-MPC, a private analog MPC protocol that performs all computations in the analog domain. We characterize the privacy of individual datasets in terms of $(\epsilon, \delta)$-local differential privacy, where the privacy of a single record in each client's dataset is guaranteed against other participants. In particular, we characterize the required noise variance in the Gaussian mechanism in terms of the required $(\epsilon,\delta)$-local differential privacy parameters by solving an optimization problem. Furthermore, compared with existing decentralized protocols, A-MPC keeps the privacy of individual datasets against the collusion of all other participants, thereby, in a notably significant improvement, increasing the maximum number of colluding clients tolerated in the protocol by a factor of three compared with the state-of-the-art collaborative learning protocols. Our experiments illustrate that the accuracy of the proposed $(\epsilon,\delta)$-locally differential private logistic regression and linear regression models trained in a fully-decentralized fashion using A-MPC closely follows that of a centralized one performed by a single trusted entity.

相關內容

Content moderation at scale faces the challenge of considering local cultural distinctions when assessing content. While global policies aim to maintain decision-making consistency and prevent arbitrary rule enforcement, they often overlook regional variations in interpreting natural language as expressed in content. In this study, we are looking into how moderation systems can tackle this issue by adapting to local comprehension nuances. We train large language models on extensive datasets of media news and articles to create culturally attuned models. The latter aim to capture the nuances of communication across geographies with the goal of recognizing cultural and societal variations in what is considered offensive content. We further explore the capability of these models to generate explanations for instances of content violation, aiming to shed light on how policy guidelines are perceived when cultural and societal contexts change. We find that training on extensive media datasets successfully induced cultural awareness and resulted in improvements in handling content violations on a regional basis. Additionally, these advancements include the ability to provide explanations that align with the specific local norms and nuances as evidenced by the annotators' preference in our conducted study. This multifaceted success reinforces the critical role of an adaptable content moderation approach in keeping pace with the ever-evolving nature of the content it oversees.

Seismic denoising is an important processing step before subsequent imaging and interpretation, which consumes a significant amount of time, whether it is for Quality control or for the associated computations. We present results of our work in training convolutional neural networks for denoising seismic data, specifically attenuation of surface related multiples and removal of overlap of shot energies during simultaneous-shooting survey. The proposed methodology is being explored not only for its ability to minimize human involvement but also because of the trained filter's ability to accelerate the process, hence, reduce processing time.

Dynamic Bayesian Networks (DBNs), renowned for their interpretability, have become increasingly vital in representing complex stochastic processes in various domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is challenging, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Bayesian Networks (BNs), and are typically focused on small-scale problems. In order to solve large-scale problems while taking full advantage of existing algorithms, this paper introduces a novel divide-and-conquer strategy, originally developed for static BNs, and adapts it for large-scale DBN structure learning. In this work, we specifically concentrate on 2 Time-sliced Bayesian Networks (2-TBNs), a special class of DBNs. Furthermore, we leverage the prior knowledge of 2-TBNs to enhance the performance of the strategy we introduce. Our approach significantly improves the scalability and accuracy of 2-TBN structure learning. Experimental results demonstrate the effectiveness of our method, showing substantial improvements over existing algorithms in both computational efficiency and structure learning accuracy. On problem instances with more than 1,000 variables, our approach improves two accuracy metrics by 74.45% and 110.94% on average , respectively, while reducing runtime by 93.65% on average.

Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains. However, these models are only accessible through a restricted API, creating barriers for new research and progress in the field. We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to enhance LLaMA, an open-source large language model. The resulting model, named Baize, demonstrates good performance in multi-turn dialogues with guardrails that minimize potential risks. Furthermore, we propose a new technique called Self-Distill with Feedback, to further improve the performance of the Baize models with feedback from ChatGPT. The Baize models and data are released for research purposes only at //github.com/project-baize/baize-chatbot. An online demo is also available at //huggingface.co/spaces/project-baize/chat-with-baize.

Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.

Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司