亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamic Bayesian Networks (DBNs), renowned for their interpretability, have become increasingly vital in representing complex stochastic processes in various domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is challenging, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Bayesian Networks (BNs), and are typically focused on small-scale problems. In order to solve large-scale problems while taking full advantage of existing algorithms, this paper introduces a novel divide-and-conquer strategy, originally developed for static BNs, and adapts it for large-scale DBN structure learning. In this work, we specifically concentrate on 2 Time-sliced Bayesian Networks (2-TBNs), a special class of DBNs. Furthermore, we leverage the prior knowledge of 2-TBNs to enhance the performance of the strategy we introduce. Our approach significantly improves the scalability and accuracy of 2-TBN structure learning. Experimental results demonstrate the effectiveness of our method, showing substantial improvements over existing algorithms in both computational efficiency and structure learning accuracy. On problem instances with more than 1,000 variables, our approach improves two accuracy metrics by 74.45% and 110.94% on average , respectively, while reducing runtime by 93.65% on average.

相關內容

Recent advancements in neural compression have surpassed traditional codecs in PSNR and MS-SSIM measurements. However, at low bit-rates, these methods can introduce visually displeasing artifacts, such as blurring, color shifting, and texture loss, thereby compromising perceptual quality of images. To address these issues, this study presents an enhanced neural compression method designed for optimal visual fidelity. We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss, to enhance the perceptual quality of image reconstructions. Additionally, we have implemented a latent refinement process to generate content-aware latent codes. These codes adhere to bit-rate constraints, balance the trade-off between distortion and fidelity, and prioritize bit allocation to regions of greater importance. Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression. On CLIC2024 validation set, our approach achieves a 62% bitrate saving compared to MS-ILLM under FID metric.

Sequence-independent lifting is a procedure for strengthening valid inequalities of an integer program. We generalize the sequence-independent lifting method of Gu, Nemhauser, and Savelsbergh (GNS lifting) for cover inequalities and correct an error in their proposed generalization. We obtain a new sequence-independent lifting technique -- piecewise-constant (PC) lifting -- with a number of interesting properties. We derive a broad set of sufficient conditions under which PC lifting is facet defining. To our knowledge, this is the first characterization of facet-defining sequence-independent liftings that are efficiently computable from the underlying cover. Finally, we demonstrate via experiments that PC lifting can be a useful alternative to GNS lifting. We test our new lifting techniques atop a number of novel cover cut generation routines, which prove to be effective in experiments with CPLEX.

We consider the problem of policy transfer between two Markov Decision Processes (MDPs). We introduce a lemma based on existing theoretical results in reinforcement learning to measure the relativity gap between two arbitrary MDPs, that is the difference between any two cumulative expected returns defined on different policies and environment dynamics. Based on this lemma, we propose two new algorithms referred to as Relative Policy Optimization (RPO) and Relative Transition Optimization (RTO), which offer fast policy transfer and dynamics modelling, respectively. RPO transfers the policy evaluated in one environment to maximize the return in another, while RTO updates the parameterized dynamics model to reduce the gap between the dynamics of the two environments. Integrating the two algorithms results in the complete Relative Policy-Transition Optimization (RPTO) algorithm, in which the policy interacts with the two environments simultaneously, such that data collections from two environments, policy and transition updates are completed in one closed loop to form a principled learning framework for policy transfer. We demonstrate the effectiveness of RPTO on a set of MuJoCo continuous control tasks by creating policy transfer problems via variant dynamics.

In hyperspectral sparse unmixing, a successful approach employs spectral bundles to address the variability of the endmembers in the spatial domain. However, the regularization penalties usually employed aggregate substantial computational complexity, and the solutions are very noise-sensitive. We generalize a multiscale spatial regularization approach to solve the unmixing problem by incorporating group sparsity-inducing mixed norms. Then, we propose a noise-robust method that can take advantage of the bundle structure to deal with endmember variability while ensuring inter- and intra-class sparsity in abundance estimation with reasonable computational cost. We also present a general heuristic to select the \emph{most representative} abundance estimation over multiple runs of the unmixing process, yielding a solution that is robust and highly reproducible. Experiments illustrate the robustness and consistency of the results when compared to related methods.

Background Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, methods for incorporating CPGs into LLMs are not well studied. Methods We develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP). To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. Zero-Shot Prompting (ZSP) was used as the baseline method. We focus on CDS for COVID-19 outpatient treatment as the case study. Results All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrated high performance in human evaluation. Conclusion LLMs enhanced with CPGs demonstrate superior performance, as compared to plain LLMs with ZSP, in providing accurate recommendations for COVID-19 outpatient treatment, which also highlights the potential for broader applications beyond the case study.

With the rapid development of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) has become a predominant method in the field of professional knowledge-based question answering. Presently, major foundation model companies have opened up Embedding and Chat API interfaces, and frameworks like LangChain have already integrated the RAG process. It appears that the key models and steps in RAG have been resolved, leading to the question: are professional knowledge QA systems now approaching perfection? This article discovers that current primary methods depend on the premise of accessing high-quality text corpora. However, since professional documents are mainly stored in PDFs, the low accuracy of PDF parsing significantly impacts the effectiveness of professional knowledge-based QA. We conducted an empirical RAG experiment across hundreds of questions from the corresponding real-world professional documents. The results show that, ChatDOC, a RAG system equipped with a panoptic and pinpoint PDF parser, retrieves more accurate and complete segments, and thus better answers. Empirical experiments show that ChatDOC is superior to baseline on nearly 47% of questions, ties for 38% of cases, and falls short on only 15% of cases. It shows that we may revolutionize RAG with enhanced PDF structure recognition.

After discovering that Language Models (LMs) can be good in-context few-shot learners, numerous strategies have been proposed to optimize in-context sequence configurations. Recently, researchers in Vision-Language (VL) domains also develop their few-shot learners, while they only use the simplest way, ie., randomly sampling, to configure in-context image-text pairs. In order to explore the effects of varying configurations on VL in-context learning, we devised four strategies for image selection and four for caption assignment to configure in-context image-text pairs for image captioning. Here Image Captioning is used as the case study since it can be seen as the visually-conditioned LM. Our comprehensive experiments yield two counter-intuitive but valuable insights, highlighting the distinct characteristics of VL in-context learning due to multi-modal synergy, as compared to the NLP case. Furthermore, in our exploration of optimal combination strategies, we observed an average performance enhancement of 20.9 of CIDEr scores compared to the baseline. The code is given in //github.com/yongliang-wu/ExploreCfg.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司