In hyperspectral sparse unmixing, a successful approach employs spectral bundles to address the variability of the endmembers in the spatial domain. However, the regularization penalties usually employed aggregate substantial computational complexity, and the solutions are very noise-sensitive. We generalize a multiscale spatial regularization approach to solve the unmixing problem by incorporating group sparsity-inducing mixed norms. Then, we propose a noise-robust method that can take advantage of the bundle structure to deal with endmember variability while ensuring inter- and intra-class sparsity in abundance estimation with reasonable computational cost. We also present a general heuristic to select the \emph{most representative} abundance estimation over multiple runs of the unmixing process, yielding a solution that is robust and highly reproducible. Experiments illustrate the robustness and consistency of the results when compared to related methods.
We consider estimating a matrix from noisy observations coming from an arbitrary additive bi- rotational invariant perturbation. We propose an estimator which is optimal among the class of rectangular rotational invariant estimators and can be applied irrespective of the prior on the signal. For the particular case of Gaussian noise, we prove the optimality of the proposed estimator, and we find an explicit expression for the MMSE in terms of the limiting singular value distribution of the observation matrix. Moreover, we prove a formula linking the asymptotic mutual information and the limit of a log-spherical integral of rectangular matrices. We also provide numerical checks for our results for general bi-rotational invariant noise, as well as Gaussian noise, which match our theoretical predictions.
Large Language Models (LLMs) have demonstrated exceptional performance in biochemical tasks, especially the molecule caption translation task, which aims to bridge the gap between molecules and natural language texts. However, previous methods in adapting LLMs to the molecule-caption translation task required extra domain-specific pre-training stages, suffered weak alignment between molecular and textual spaces, or imposed stringent demands on the scale of LLMs. To resolve the challenges, we propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples via In-Context Molecule Tuning. Specifically, ICMA incorporates the following three stages: Cross-modal Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning. Initially, Cross-modal Retrieval utilizes BM25 Caption Retrieval and Molecule Graph Retrieval to retrieve informative context examples. Additionally, we also propose Post-retrieval Re-ranking with Sequence Reversal and Random Walk to further improve the quality of retrieval results. Finally, In-Context Molecule Tuning unlocks the in-context molecule learning capability of LLMs with retrieved examples and adapts the parameters of LLMs for the molecule-caption translation task. Experimental results demonstrate that ICMT can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures, showing that LLMs are inherently in-context molecule learners.
Recent studies reveal the connection between GNNs and the diffusion process, which motivates many diffusion-based GNNs to be proposed. However, since these two mechanisms are closely related, one fundamental question naturally arises: Is there a general diffusion framework that can formally unify these GNNs? The answer to this question can not only deepen our understanding of the learning process of GNNs, but also may open a new door to design a broad new class of GNNs. In this paper, we propose a general diffusion equation framework with the fidelity term, which formally establishes the relationship between the diffusion process with more GNNs. Meanwhile, with this framework, we identify one characteristic of graph diffusion networks, i.e., the current neural diffusion process only corresponds to the first-order diffusion equation. However, by an experimental investigation, we show that the labels of high-order neighbors actually exhibit monophily property, which induces the similarity based on labels among high-order neighbors without requiring the similarity among first-order neighbors. This discovery motives to design a new high-order neighbor-aware diffusion equation, and derive a new type of graph diffusion network (HiD-Net) based on the framework. With the high-order diffusion equation, HiD-Net is more robust against attacks and works on both homophily and heterophily graphs. We not only theoretically analyze the relation between HiD-Net with high-order random walk, but also provide a theoretical convergence guarantee. Extensive experimental results well demonstrate the effectiveness of HiD-Net over state-of-the-art graph diffusion networks.
Thresholded hybrid systems are restricted dynamical systems, where the current mode, and hence the ODE system describing its behavior, is solely determined by externally supplied digital input signals and where the only output signals are digital ones generated by comparing an internal state variable to a threshold value. An attractive feature of such systems is easy composition, which is facilitated by their purely digital interface. A particularly promising application domain of thresholded hybrid systems is digital integrated circuits: Modern digital circuit design considers them as a composition of Millions and even Billions of elementary logic gates, like inverters, GOR and Gand. Since every such logic gate is eventually implemented as an electronic circuit, however, which exhibits a behavior that is governed by some ODE system, thresholded hybrid systems are ideally suited for making the transition from the analog to the digital world rigorous. In this paper, we prove that the mapping from digital input signals to digital output signals is continuous for a large class of thresholded hybrid systems. Moreover, we show that, under some mild conditions regarding causality, this continuity also continues to hold for arbitrary compositions, which in turn guarantees that the composition faithfully captures the analog reality. By applying our generic results to some recently developed thresholded hybrid gate models, both for single-input single-output gates like inverters and for a two-input CMOS NOR gate, we show that they are continuous. Moreover, we provide a novel thresholded hybrid model for the two-input NOR gate, which is not only continuous but also, unlike the existing one, faithfully models all multi-input switching effects.
Real-world systems are often formulated as constrained optimization problems. Techniques to incorporate constraints into Neural Networks (NN), such as Neural Ordinary Differential Equations (Neural ODEs), have been used. However, these introduce hyperparameters that require manual tuning through trial and error, raising doubts about the successful incorporation of constraints into the generated model. This paper describes in detail the two-stage training method for Neural ODEs, a simple, effective, and penalty parameter-free approach to model constrained systems. In this approach the constrained optimization problem is rewritten as two unconstrained sub-problems that are solved in two stages. The first stage aims at finding feasible NN parameters by minimizing a measure of constraints violation. The second stage aims to find the optimal NN parameters by minimizing the loss function while keeping inside the feasible region. We experimentally demonstrate that our method produces models that satisfy the constraints and also improves their predictive performance. Thus, ensuring compliance with critical system properties and also contributing to reducing data quantity requirements. Furthermore, we show that the proposed method improves the convergence to an optimal solution and improves the explainability of Neural ODE models. Our proposed two-stage training method can be used with any NN architectures.
We prove lower bounds on the error of any estimator for the mean of a real probability distribution under the knowledge that the distribution belongs to a given set. We apply these lower bounds both to parametric and nonparametric estimation. In the nonparametric case, we apply our results to the question of sub-Gaussian estimation for distributions with finite variance to obtain new lower bounds in the small error probability regime, and present an optimal estimator in that regime. In the (semi-)parametric case, we use the Fisher information to provide distribution-dependent lower bounds that are constant-tight asymptotically, of order $\sqrt{2\log(1/\delta)/(nI)}$ where $I$ is the Fisher information of the distribution. We use known minimizers of the Fisher information on some nonparametric set of distributions to give lower bounds in cases such as corrupted distributions, or bounded/semi-bounded distributions.
We consider the fundamental problem of decomposing a large-scale approximate nearest neighbor search (ANNS) problem into smaller sub-problems. The goal is to partition the input points into neighborhood-preserving shards, so that the nearest neighbors of any point are contained in only a few shards. When a query arrives, a routing algorithm is used to identify the shards which should be searched for its nearest neighbors. This approach forms the backbone of distributed ANNS, where the dataset is so large that it must be split across multiple machines. In this paper, we design simple and highly efficient routing methods, and prove strong theoretical guarantees on their performance. A crucial characteristic of our routing algorithms is that they are inherently modular, and can be used with any partitioning method. This addresses a key drawback of prior approaches, where the routing algorithms are inextricably linked to their associated partitioning method. In particular, our new routing methods enable the use of balanced graph partitioning, which is a high-quality partitioning method without a naturally associated routing algorithm. Thus, we provide the first methods for routing using balanced graph partitioning that are extremely fast to train, admit low latency, and achieve high recall. We provide a comprehensive evaluation of our full partitioning and routing pipeline on billion-scale datasets, where it outperforms existing scalable partitioning methods by significant margins, achieving up to 2.14x higher QPS at 90% recall$@10$ than the best competitor.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.