亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent studies reveal the connection between GNNs and the diffusion process, which motivates many diffusion-based GNNs to be proposed. However, since these two mechanisms are closely related, one fundamental question naturally arises: Is there a general diffusion framework that can formally unify these GNNs? The answer to this question can not only deepen our understanding of the learning process of GNNs, but also may open a new door to design a broad new class of GNNs. In this paper, we propose a general diffusion equation framework with the fidelity term, which formally establishes the relationship between the diffusion process with more GNNs. Meanwhile, with this framework, we identify one characteristic of graph diffusion networks, i.e., the current neural diffusion process only corresponds to the first-order diffusion equation. However, by an experimental investigation, we show that the labels of high-order neighbors actually exhibit monophily property, which induces the similarity based on labels among high-order neighbors without requiring the similarity among first-order neighbors. This discovery motives to design a new high-order neighbor-aware diffusion equation, and derive a new type of graph diffusion network (HiD-Net) based on the framework. With the high-order diffusion equation, HiD-Net is more robust against attacks and works on both homophily and heterophily graphs. We not only theoretically analyze the relation between HiD-Net with high-order random walk, but also provide a theoretical convergence guarantee. Extensive experimental results well demonstrate the effectiveness of HiD-Net over state-of-the-art graph diffusion networks.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

The complexity of the alignment problem stems from the fact that existing methods are unstable. Researchers continuously invent various tricks to address this shortcoming. For instance, in the fundamental Reinforcement Learning From Human Feedback (RLHF) technique of Language Model alignment, in addition to reward maximization, the Kullback-Leibler divergence between the trainable policy and the SFT policy is minimized. This addition prevents the model from being overfitted to the Reward Model (RM) and generating texts that are out-of-domain for the RM. The Direct Preference Optimization (DPO) method reformulates the optimization task of RLHF and eliminates the Reward Model while tacitly maintaining the requirement for the policy to be close to the SFT policy. In our paper, we argue that this implicit limitation in the DPO method leads to sub-optimal results. We propose a new method called Trust Region DPO (TR-DPO), which updates the reference policy during training. With such a straightforward update, we demonstrate the effectiveness of TR-DPO against DPO on the Anthropic HH and TLDR datasets. We show that TR-DPO outperforms DPO by up to 19%, measured by automatic evaluation with GPT-4. The new alignment approach that we propose allows us to improve the quality of models across several parameters at once, such as coherence, correctness, level of detail, helpfulness, and harmlessness.

With the increasing popularity of ChatGPT, large language models (LLMs) have demonstrated their capabilities in communication and reasoning, promising for transportation sector intelligentization. However, they still face challenges in domain-specific knowledge. This paper aims to leverage LLMs' reasoning and recognition abilities to replace traditional user interfaces and create an "intelligent operating system" for transportation simulation software, exploring their potential with transportation modeling and simulation. We introduce Network Generation AI (NGAI), integrating LLMs with road network modeling plugins, validated through experiments for accuracy and robustness. NGAI's effective use has reduced modeling costs, revolutionized transportation simulations, optimized user steps, and proposed a novel approach for LLM integration in the transportation field.

We introduce a new attention mechanism, dubbed structural self-attention (StructSA), that leverages rich correlation patterns naturally emerging in key-query interactions of attention. StructSA generates attention maps by recognizing space-time structures of key-query correlations via convolution and uses them to dynamically aggregate local contexts of value features. This effectively leverages rich structural patterns in images and videos such as scene layouts, object motion, and inter-object relations. Using StructSA as a main building block, we develop the structural vision transformer (StructViT) and evaluate its effectiveness on both image and video classification tasks, achieving state-of-the-art results on ImageNet-1K, Kinetics-400, Something-Something V1 & V2, Diving-48, and FineGym.

Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.

Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. We further implement a comprehensive codebase at: //github.com/yifanlu0227/HEAL

Visually evaluating the goodness of generated Multivariate Time Series (MTS) are difficult to implement, especially in the case that the generative model is Generative Adversarial Networks (GANs). We present a general framework named Gaussian GANs to visually evaluate GANs using itself under the MTS generation task. Firstly, we attempt to find the transformation function in the multivariate Kolmogorov Smirnov (MKS) test by explicitly reconstructing the architecture of GANs. Secondly, we conduct the normality test of transformed MST where the Gaussian GANs serves as the transformation function in the MKS test. In order to simplify the normality test, an efficient visualization is proposed using the chi square distribution. In the experiment, we use the UniMiB dataset and provide empirical evidence showing that the normality test using Gaussian GANs and chi sqaure visualization is effective and credible.

The secure operation of the routing protocol is one of the major challenges to be met for the proliferation of the Mobile Ad hoc Networking (MANET) paradigm. Nevertheless, security enhancements have been proposed mostly for reactive MANET protocols. The proposed here Secure Link State Routing Protocol (SLSP) provides secure proactive topology discovery, which can be multiply beneficial to the network operation. SLSP can be employed as a stand-alone protocol, or fit naturally into a hybrid routing framework, when combined with a reactive protocol. SLSP is robust against individual attackers, it is capable of adjusting its scope between local and network-wide topology discovery, and it is capable of operating in networks of frequently changing topology and membership.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司