After completing their undergraduate studies, many computer science (CS) students apply for competitive graduate programs in North America. Their long-term goal is often to be hired by one of the big five tech companies or to become a faculty member. Therefore, being aware of the role of admission criteria may help them choose the best path towards their goals. In this paper, we analyze the influence of students' previous universities on their chances of being accepted to prestigious North American universities and returning to academia as professors in the future. Our findings demonstrate that the ranking of their prior universities is a significant factor in achieving their goals. We then illustrate that there is a bias in the undergraduate institutions of students admitted to the top 25 computer science programs. Finally, we employ machine learning models to forecast the success of professors at these universities. We achieved an RMSE of 7.85 for this prediction task.
How scientists navigate between the need to capitalize on their prior knowledge by specializing, and the urge to adapt to evolving research opportunities? Drawing from diverse perspectives on adaptation, in particular from institutional change and cultural evolution, this paper proposes an unsupervised Bayesian model of the evolution of scientists' research portfolios in response to transformations in their field. The model relies on scientific abstracts and authorship data to evaluate the influence of intellectual, social, and institutional resources on scientists' trajectories within a cohort of $2\,195$ high-energy physicists between 2000 and 2019. The reallocation of research efforts is shown to be shaped by learning costs, thus enhancing the utility of the scientific capital disseminated among scientists. Two dimensions of social capital, namely ``diversity'' and ``power'', have opposite effects on the magnitude of change in scientists' research interests: while ``diversity'' disrupts and expands research interests, ``power'' stabilizes physicists' research agendas -- as does institutional stability. Social capital plays a more crucial role in shifts between cognitively distant research areas. This contribution paves the way for further investigation of science and scientific communities as adaptative systems.
We present a large-scale empirical study of how choices of configuration parameters affect performance in knowledge distillation (KD). An example of such a KD parameter is the measure of distance between the predictions of the teacher and the student, common choices for which include the mean squared error (MSE) and the KL-divergence. Although scattered efforts have been made to understand the differences between such options, the KD literature still lacks a systematic study on their general effect on student performance. We take an empirical approach to this question in this paper, seeking to find out the extent to which such choices influence student performance across 13 datasets from 4 NLP tasks and 3 student sizes. We quantify the cost of making sub-optimal choices and identify a single configuration that performs well across the board.
College students with ADHD respond positively to simple socially assistive robots (SARs) that monitor attention and provide non-verbal feedback, but studies have been done only in brief in-lab sessions. We present an initial design and evaluation of an in-dorm SAR study companion for college students with ADHD. This work represents the introductory stages of an ongoing user-centered, participatory design process. In a three-week within-subjects user study, university students (N=11) with self-reported symptoms of adult ADHD had a SAR study companion in their dorm room for two weeks and a computer-based system for one week. Toward developing SARs for long-term, in-dorm use, we focus on 1) evaluating the usability and desire for SAR study companions by college students with ADHD and 2) collecting participant feedback about the SAR design and functionality. Participants responded positively to the robot; after one week of regular use, 91% (10 of 11) chose to continue using the robot voluntarily in the second week.
Deep reinforcement learning (RL) works impressively in some environments and fails catastrophically in others. Ideally, RL theory should be able to provide an understanding of why this is, i.e. bounds predictive of practical performance. Unfortunately, current theory does not quite have this ability. We compare standard deep RL algorithms to prior sample complexity bounds by introducing a new dataset, BRIDGE. It consists of 155 deterministic MDPs from common deep RL benchmarks, along with their corresponding tabular representations, which enables us to exactly compute instance-dependent bounds. We choose to focus on deterministic environments because they share many interesting properties of stochastic environments, but are easier to analyze. Using BRIDGE, we find that prior bounds do not correlate well with when deep RL succeeds vs. fails, but discover a surprising property that does. When actions with the highest Q-values under the random policy also have the highest Q-values under the optimal policy (i.e. when it is optimal to be greedy on the random policy's Q function), deep RL tends to succeed; when they don't, deep RL tends to fail. We generalize this property into a new complexity measure of an MDP that we call the effective horizon, which roughly corresponds to how many steps of lookahead search would be needed in that MDP in order to identify the next optimal action, when leaf nodes are evaluated with random rollouts. Using BRIDGE, we show that the effective horizon-based bounds are more closely reflective of the empirical performance of PPO and DQN than prior sample complexity bounds across four metrics. We also find that, unlike existing bounds, the effective horizon can predict the effects of using reward shaping or a pre-trained exploration policy. Our code and data are available at //github.com/cassidylaidlaw/effective-horizon
In this study, we establish that deep neural networks employing ReLU and ReLU$^2$ activation functions can effectively represent Lagrange finite element functions of any order on various simplicial meshes in arbitrary dimensions. We introduce two novel formulations for globally expressing the basis functions of Lagrange elements, tailored for both specific and arbitrary meshes. These formulations are based on a geometric decomposition of the elements, incorporating several insightful and essential properties of high-dimensional simplicial meshes, barycentric coordinate functions, and global basis functions of linear elements. This representation theory facilitates a natural approximation result for such deep neural networks. Our findings present the first demonstration of how deep neural networks can systematically generate general continuous piecewise polynomial functions on both specific or arbitrary simplicial meshes.
We present first results from the use of XGBoost, a highly effective machine learning (ML) method, within the Bristol Betting Exchange (BBE), an open-source agent-based model (ABM) designed to simulate a contemporary sports-betting exchange with in-play betting during track-racing events such as horse races. We use the BBE ABM and its array of minimally-simple bettor-agents as a synthetic data generator which feeds into our XGBoost ML system, with the intention that XGBoost discovers profitable dynamic betting strategies by learning from the more profitable bets made by the BBE bettor-agents. After this XGBoost training, which results in one or more decision trees, a bettor-agent with a betting strategy determined by the XGBoost-learned decision tree(s) is added to the BBE ABM and made to bet on a sequence of races under various conditions and betting-market scenarios, with profitability serving as the primary metric of comparison and evaluation. Our initial findings presented here show that XGBoost trained in this way can indeed learn profitable betting strategies, and can generalise to learn strategies that outperform each of the set of strategies used for creation of the training data. To foster further research and enhancements, the complete version of our extended BBE, including the XGBoost integration, has been made freely available as an open-source release on GitHub.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.