Real-time accurate solutions of large-scale complex dynamical systems are critically needed for control, optimization, uncertainty quantification, and decision-making in practical engineering and science applications, particularly in digital twin contexts. In this work, we develop a model-constrained discontinuous Galerkin Network (DGNet) approach, an extension to our previous work [Model-constrained Tagent Slope Learning Approach for Dynamical Systems], for compressible Euler equations with out-of-distribution generalization. The core of DGNet is the synergy of several key strategies: (i) leveraging time integration schemes to capture temporal correlation and taking advantage of neural network speed for computation time reduction; (ii) employing a model-constrained approach to ensure the learned tangent slope satisfies governing equations; (iii) utilizing a GNN-inspired architecture where edges represent Riemann solver surrogate models and nodes represent volume integration correction surrogate models, enabling capturing discontinuity capacity, aliasing error reduction, and mesh discretization generalizability; (iv) implementing the input normalization technique that allows surrogate models to generalize across different initial conditions, boundary conditions, and solution orders; and (v) incorporating a data randomization technique that not only implicitly promotes agreement between surrogate models and true numerical models up to second-order derivatives, ensuring long-term stability and prediction capacity, but also serves as a data generation engine during training, leading to enhanced generalization on unseen data. To validate the effectiveness, stability, and generalizability of our novel DGNet approach, we present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
Efficiently deriving structured workflows from unannotated dialogs remains an underexplored and formidable challenge in computational linguistics. Automating this process could significantly accelerate the manual design of workflows in new domains and enable the grounding of large language models in domain-specific flowcharts, enhancing transparency and controllability. In this paper, we introduce Dialog2Flow (D2F) embeddings, which differ from conventional sentence embeddings by mapping utterances to a latent space where they are grouped according to their communicative and informative functions (i.e., the actions they represent). D2F allows for modeling dialogs as continuous trajectories in a latent space with distinct action-related regions. By clustering D2F embeddings, the latent space is quantized, and dialogs can be converted into sequences of region/action IDs, facilitating the extraction of the underlying workflow. To pre-train D2F, we build a comprehensive dataset by unifying twenty task-oriented dialog datasets with normalized per-turn action annotations. We also introduce a novel soft contrastive loss that leverages the semantic information of these actions to guide the representation learning process, showing superior performance compared to standard supervised contrastive loss. Evaluation against various sentence embeddings, including dialog-specific ones, demonstrates that D2F yields superior qualitative and quantitative results across diverse domains.
Multi-object multi-part scene segmentation is a challenging task whose complexity scales exponentially with part granularity and number of scene objects. To address the task, we propose a plug-and-play approach termed OLAF. First, we augment the input (RGB) with channels containing object-based structural cues (fg/bg mask, boundary edge mask). We propose a weight adaptation technique which enables regular (RGB) pre-trained models to process the augmented (5-channel) input in a stable manner during optimization. In addition, we introduce an encoder module termed LDF to provide low-level dense feature guidance. This assists segmentation, particularly for smaller parts. OLAF enables significant mIoU gains of $\mathbf{3.3}$ (Pascal-Parts-58), $\mathbf{3.5}$ (Pascal-Parts-108) over the SOTA model. On the most challenging variant (Pascal-Parts-201), the gain is $\mathbf{4.0}$. Experimentally, we show that OLAF's broad applicability enables gains across multiple architectures (CNN, U-Net, Transformer) and datasets. The code is available at olafseg.github.io
In indoor environments, multi-robot visual (RGB-D) mapping and exploration hold immense potential for application in domains such as domestic service and logistics, where deploying multiple robots in the same environment can significantly enhance efficiency. However, there are two primary challenges: (1) the "ghosting trail" effect, which occurs due to overlapping views of robots impacting the accuracy and quality of point cloud reconstruction, and (2) the oversight of visual reconstructions in selecting the most effective frontiers for exploration. Given these challenges are interrelated, we address them together by proposing a new semi-distributed framework (SPACE) for spatial cooperation in indoor environments that enables enhanced coverage and 3D mapping. SPACE leverages geometric techniques, including "mutual awareness" and a "dynamic robot filter," to overcome spatial mapping constraints. Additionally, we introduce a novel spatial frontier detection system and map merger, integrated with an adaptive frontier assigner for optimal coverage balancing the exploration and reconstruction objectives. In extensive ROS-Gazebo simulations, SPACE demonstrated superior performance over state-of-the-art approaches in both exploration and mapping metrics.
Class imbalance and label noise are pervasive in large-scale datasets, yet much of machine learning research assumes well-labeled, balanced data, which rarely reflects real world conditions. Existing approaches typically address either label noise or class imbalance in isolation, leading to suboptimal results when both issues coexist. In this work, we propose Conformal-in-the-Loop (CitL), a novel training framework that addresses both challenges with a conformal prediction-based approach. CitL evaluates sample uncertainty to adjust weights and prune unreliable examples, enhancing model resilience and accuracy with minimal computational cost. Our extensive experiments include a detailed analysis showing how CitL effectively emphasizes impactful data in noisy, imbalanced datasets. Our results show that CitL consistently boosts model performance, achieving up to a 6.1% increase in classification accuracy and a 5.0 mIoU improvement in segmentation. Our code is publicly available: CitL.
As industrial models and designs grow increasingly complex, the demand for optimal control of large-scale dynamical systems has significantly increased. However, traditional methods for optimal control incur significant overhead as problem dimensions grow. In this paper, we introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups. Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation. Specifically, we build a quantum-assisted differentiable simulator for efficient gradient estimation that is more accurate and robust than classical methods relying on stochastic approximation. Compared to the classical approaches, our method achieves a super-quadratic speedup. To the best of our knowledge, this is the first end-to-end quantum application to linear control problems with provable quantum advantage.
Condition-based maintenance is becoming increasingly important in hydraulic systems. However, anomaly detection for these systems remains challenging, especially since that anomalous data is scarce and labeling such data is tedious and even dangerous. Therefore, it is advisable to make use of unsupervised or semi-supervised methods, especially for semi-supervised learning which utilizes unsupervised learning as a feature extraction mechanism to aid the supervised part when only a small number of labels are available. This study systematically compares semi-supervised learning methods applied for anomaly detection in hydraulic condition monitoring systems. Firstly, thorough data analysis and feature learning were carried out to understand the open-sourced hydraulic condition monitoring dataset. Then, various methods were implemented and evaluated including traditional stand-alone semi-supervised learning models (e.g., one-class SVM, Robust Covariance), ensemble models (e.g., Isolation Forest), and deep neural network based models (e.g., autoencoder, Hierarchical Extreme Learning Machine (HELM)). Typically, this study customized and implemented an extreme learning machine based semi-supervised HELM model and verified its superiority over other semi-supervised methods. Extensive experiments show that the customized HELM model obtained state-of-the-art performance with the highest accuracy (99.5%), the lowest false positive rate (0.015), and the best F1-score (0.985) beating other semi-supervised methods.
Multi-agent hierarchical reinforcement learning (MAHRL) has been studied as an effective means to solve intelligent decision problems in complex and large-scale environments. However, most current MAHRL algorithms follow the traditional way of using reward functions in reinforcement learning, which limits their use to a single task. This study aims to design a multi-agent cooperative algorithm with logic reward shaping (LRS), which uses a more flexible way of setting the rewards, allowing for the effective completion of multi-tasks. LRS uses Linear Temporal Logic (LTL) to express the internal logic relation of subtasks within a complex task. Then, it evaluates whether the subformulae of the LTL expressions are satisfied based on a designed reward structure. This helps agents to learn to effectively complete tasks by adhering to the LTL expressions, thus enhancing the interpretability and credibility of their decisions. To enhance coordination and cooperation among multiple agents, a value iteration technique is designed to evaluate the actions taken by each agent. Based on this evaluation, a reward function is shaped for coordination, which enables each agent to evaluate its status and complete the remaining subtasks through experiential learning. Experiments have been conducted on various types of tasks in the Minecraft-like environment. The results demonstrate that the proposed algorithm can improve the performance of multi-agents when learning to complete multi-tasks.
The emergence of intelligent applications has fostered the development of a task-oriented communication paradigm, where a comprehensive, universal, and practical metric is crucial for unleashing the potential of this paradigm. To this end, we introduce an innovative metric, the Task-oriented Age of Information (TAoI), to measure whether the content of information is relevant to the system task, thereby assisting the system in efficiently completing designated tasks. Also, we study the TAoI in a remote monitoring system, whose task is to identify target images and transmit them for subsequent analysis. We formulate the dynamic transmission problem as a Semi-Markov Decision Process (SMDP) and transform it into an equivalent Markov Decision Process (MDP) to minimize TAoI and find the optimal transmission policy. Furthermore, we demonstrate that the optimal strategy is a threshold-based policy regarding TAoI and propose a relative value iteration algorithm based on the threshold structure to obtain the optimal transmission policy. Finally, simulation results show the superior performance of the optimal transmission policy compared to the baseline policies.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.