A continuous motion planning method for connected automated vehicles is considered for generating feasible trajectories in real-time using three consecutive clothoids. The proposed method reduces path planning to a small set of nonlinear algebraic equations such that the generated path can be efficiently checked for feasibility and collision. After path planning, velocity planning is executed while maintaining a parallel simple structure. Key strengths of this framework include its interpretability, shareability, and ability to specify boundary conditions. Its interpretability and shareability stem from the succinct representation of the resulting local motion plan using a handful of physically meaningful parameters. Vehicles may share these parameters via V2X communication so that the recipients can precisely reconstruct the planned trajectory of the senders and respond accordingly. The proposed local planner guarantees the satisfaction of boundary conditions, thus ensuring seamless integration with a wide array of higher-level global motion planners. The tunable nature of the method enables tailoring the local plans to specific maneuvers like turns at intersections, lane changes, and U-turns.
Topology optimization is a critical task in engineering design, where the goal is to optimally distribute material in a given space for maximum performance. We introduce Neural Implicit Topology Optimization (NITO), a novel approach to accelerate topology optimization problems using deep learning. NITO stands out as one of the first frameworks to offer a resolution-free and domain-agnostic solution in deep learning-based topology optimization. NITO synthesizes structures with up to seven times better structural efficiency compared to SOTA diffusion models and does so in a tenth of the time. In the NITO framework, we introduce a novel method, the Boundary Point Order-Invariant MLP (BPOM), to represent boundary conditions in a sparse and domain-agnostic manner, moving away from expensive simulation-based approaches. Crucially, NITO circumvents the domain and resolution limitations that restrict Convolutional Neural Network (CNN) models to a structured domain of fixed size -- limitations that hinder the widespread adoption of CNNs in engineering applications. This generalizability allows a single NITO model to train and generate solutions in countless domains, eliminating the need for numerous domain-specific CNNs and their extensive datasets. Despite its generalizability, NITO outperforms SOTA models even in specialized tasks, is an order of magnitude smaller, and is practically trainable at high resolutions that would be restrictive for CNNs. This combination of versatility, efficiency, and performance underlines NITO's potential to transform the landscape of engineering design optimization problems through implicit fields.
Single object tracking (SOT) is a fundamental problem in computer vision, with a wide range of applications, including autonomous driving, augmented reality, and robot navigation. The robustness of SOT faces two main challenges: tiny target and fast motion. These challenges are especially manifested in videos captured by unmanned aerial vehicles (UAV), where the target is usually far away from the camera and often with significant motion relative to the camera. To evaluate the robustness of SOT methods, we propose BioDrone -- the first bionic drone-based visual benchmark for SOT. Unlike existing UAV datasets, BioDrone features videos captured from a flapping-wing UAV system with a major camera shake due to its aerodynamics. BioDrone hence highlights the tracking of tiny targets with drastic changes between consecutive frames, providing a new robust vision benchmark for SOT. To date, BioDrone offers the largest UAV-based SOT benchmark with high-quality fine-grained manual annotations and automatically generates frame-level labels, designed for robust vision analyses. Leveraging our proposed BioDrone, we conduct a systematic evaluation of existing SOT methods, comparing the performance of 20 representative models and studying novel means of optimizing a SOTA method (KeepTrack KeepTrack) for robust SOT. Our evaluation leads to new baselines and insights for robust SOT. Moving forward, we hope that BioDrone will not only serve as a high-quality benchmark for robust SOT, but also invite future research into robust computer vision. The database, toolkits, evaluation server, and baseline results are available at //biodrone.aitestunion.com.
Accurately estimating risk in real-time is essential for ensuring the safety and efficiency of many applications involving autonomous robot systems. This paper presents a novel, generalizable algorithm for the real-time estimation of risks created by external disturbances on multirotors. Unlike conventional approaches, our method requires no additional sensors, accurate drone models, or large datasets. It employs motor command data in a fuzzy logic system, overcoming barriers to real-world implementation. Inherently adaptable, it utilizes fundamental drone characteristics, making it applicable to diverse drone models. The efficiency of the algorithm has been confirmed through comprehensive real-world testing on various platforms. It proficiently discerned between high and low-risk scenarios resulting from diverse wind disturbances and varying thrust-to-weight ratios. The algorithm surpassed the widely-recognized ArduCopter wind estimation algorithm in performance and demonstrated its capability to promptly detect brief gusts.
The Factorial Basis method, initially designed for quasi-triangular, shift-compatible factorial bases, provides solutions to linear recurrence equations in the form of definite-sums. This paper extends the Factorial Basis method to its q-analog, enabling its application in q-calculus. We demonstrate the adaptation of the method to q-sequences and its utility in the realm of q-combinatorics. The extended technique is employed to automatically prove established identities and unveil novel ones, particularly some associated with the Rogers-Ramanujan identities.
Multi-instance registration is a challenging problem in computer vision and robotics, where multiple instances of an object need to be registered in a standard coordinate system. In this work, we propose the first iterative framework called instance-by-instance (IBI) for multi-instance 3D registration (MI-3DReg). It successively registers all instances in a given scenario, starting from the easiest and progressing to more challenging ones. Throughout the iterative process, outliers are eliminated continuously, leading to an increasing inlier rate for the remaining and more challenging instances. Under the IBI framework, we further propose a sparse-to-dense-correspondence-based multi-instance registration method (IBI-S2DC) to achieve robust MI-3DReg. Experiments on the synthetic and real datasets have demonstrated the effectiveness of IBI and suggested the new state-of-the-art performance of IBI-S2DC, e.g., our MHF1 is 12.02%/12.35% higher than the existing state-of-the-art method ECC on the synthetic/real datasets.
Vehicle pose estimation with LiDAR is essential in the perception technology of autonomous driving. However, due to incomplete observation measurements and sparsity of the LiDAR point cloud, it is challenging to achieve satisfactory pose extraction based on 3D LiDAR with the existing pose estimation methods. In addition, the demand for real-time performance further increases the difficulty of the pose estimation task. In this paper, we propose a novel vehicle pose estimation method based on the convex hull. The extracted 3D cluster is reduced to the convex hull, reducing the subsequent computation burden while preserving essential contour information. Subsequently, a novel criterion based on the minimum occlusion area is developed for the search-based algorithm, enabling accurate pose estimation. Additionally, this criterion renders the proposed algorithm particularly well-suited for obstacle avoidance. The proposed algorithm is validated on the KITTI dataset and a manually labeled dataset acquired at an industrial park. The results demonstrate that our proposed method can achieve better accuracy than the classical pose estimation method while maintaining real-time speed.
We consider a model convection-diffusion problem and present useful connections between the finite differences and finite element discretization methods. We introduce a general upwinding Petrov-Galerkin discretization based on bubble modification of the test space and connect the method with the general upwinding approach used in finite difference discretization. We write the finite difference and the finite element systems such that the two corresponding linear systems have the same stiffness matrices, and compare the right hand side load vectors for the two methods. This new approach allows for improving well known upwinding finite difference methods and for obtaining new error estimates. We prove that the exponential bubble Petrov-Galerkin discretization can recover the interpolant of the exact solution. As a consequence, we estimate the closeness of the related finite difference solutions to the interpolant. The ideas we present in this work, can lead to building efficient new discretization methods for multidimensional convection dominated problems.
For autonomous mobile robots, uncertainties in the environment and system model can lead to failure in the motion planning pipeline, resulting in potential collisions. In order to achieve a high level of robust autonomy, these robots should be able to proactively predict and recover from such failures. To this end, we propose a Gaussian Process (GP) based model for proactively detecting the risk of future motion planning failure. When this risk exceeds a certain threshold, a recovery behavior is triggered that leverages the same GP model to find a safe state from which the robot may continue towards the goal. The proposed approach is trained in simulation only and can generalize to real world environments on different robotic platforms. Simulations and physical experiments demonstrate that our framework is capable of both predicting planner failures and recovering the robot to states where planner success is likely, all while producing agile motion.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.