亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

From the deployment of chatbots as procurement negotiators by corporations such as Walmart to autonomous agents providing 'differentiated chat' for managing overbooked flights, synthetic media are making the world of logistics their 'natural' habitat. Here the coordination of commodities, parts and labour design the problems and produce the training sets from which 'solutions' can be synthesised. But to what extent might synthetic media, surfacing via proto-platforms such as MidJourney and OpenAI and apps such as Eleven Labs and D:ID, be understood as logistical media? This paper details synthetic media experiments with 'ChatFOS', a GPT-based bot tasked with developing a logistics design business. Using its prompt-generated media outputs, we assemble a simulation and parody of AI's emerging functionalities within logistical worlds. In the process, and with clunky 'human-in-the-loop' stitching, we illustrate how large language models become media routers or switches, governing production of image prompts, website code, promotional copy, and investor pitch scenarios. Together these elements become links chained together in media ensembles such as the corporate website or the promotional video, fuelling the fictive logistics visualisation company we have 'founded'. The processes and methods of producing speculative scenarios via ChatFOS lead us to consider how synthetic media might be re-positioned as logistical media. Our experiments probe the ways in which the media of logistics and the logistics of media are increasingly enfolded. We ask: what can a (practice-based) articulation of this double-becoming of logistics and synthetic mediality tell us about the politics and aesthetics of contemporary computation and capital?

相關內容

Processing 是一(yi)門開(kai)源編程語(yu)言和(he)(he)與(yu)之配套的集成開(kai)發環境(IDE)的名(ming)稱。Processing 在電子藝術和(he)(he)視(shi)覺(jue)設(she)計(ji)社區(qu)被用來教授(shou)編程基礎,并(bing)運用于大量的新媒體和(he)(he)互動藝術作品中。

Collaborative perception in automated vehicles leverages the exchange of information between agents, aiming to elevate perception results. Previous camera-based collaborative 3D perception methods typically employ 3D bounding boxes or bird's eye views as representations of the environment. However, these approaches fall short in offering a comprehensive 3D environmental prediction. To bridge this gap, we introduce the first method for collaborative 3D semantic occupancy prediction. Particularly, it improves local 3D semantic occupancy predictions by hybrid fusion of (i) semantic and occupancy task features, and (ii) compressed orthogonal attention features shared between vehicles. Additionally, due to the lack of a collaborative perception dataset designed for semantic occupancy prediction, we augment a current collaborative perception dataset to include 3D collaborative semantic occupancy labels for a more robust evaluation. The experimental findings highlight that: (i) our collaborative semantic occupancy predictions excel above the results from single vehicles by over 30%, and (ii) models anchored on semantic occupancy outpace state-of-the-art collaborative 3D detection techniques in subsequent perception applications, showcasing enhanced accuracy and enriched semantic-awareness in road environments.

In the emerging space economy, autonomous robotic missions with specialized goals such as mapping and mining are gaining traction, with agencies and enterprises increasingly investing resources. Multirobot systems (MRS) research has provided many approaches to establish control and communication layers to facilitate collaboration from a technical perspective, such as granting more autonomy to heterogeneous robotic groups through auction-based interactions in mesh networks. However, stakeholders' competing economic interests often prevent them from cooperating within a proprietary ecosystem. Related work suggests that distributed ledger technology (DLT) might serve as a mechanism for enterprises to coordinate workflows and trade services to explore space resources through a transparent, reliable, non-proprietary digital platform. We challenge this perspective by pointing to the core technical weaknesses of blockchains, in particular, increased energy consumption, low throughput, and full transparency through redundancy. Our objective is to advance the discussion in a direction where the benefits of DLT from an economic perspective are weighted against the drawbacks from a technical perspective. We finally present a possible DLT-driven heterogeneous MRS for map exploration to study the opportunities for economic collaboration and competitiveness.

An important prerequisite for autonomous robots is their ability to reliably grasp a wide variety of objects. Most state-of-the-art systems employ specialized or simple end-effectors, such as two-jaw grippers, which limit the range of objects to manipulate. Additionally, they conventionally require a structured and fully predictable environment while the vast majority of our world is complex, unstructured, and dynamic. This paper presents a novel approach to integrate a five-finger hand with visual servo control to enable dynamic grasping and compensate for external disturbances. The multi-fingered end-effector enhances the variety of possible grasps and manipulable objects. It is controlled by a deep learning based generative grasping network. The required virtual model of the unknown target object is iteratively completed by processing visual sensor data. Our experiments on real hardware confirm the system's capability to reliably grasp unknown dynamic target objects. To the best of our knowledge, this is the first method to achieve dynamic multi-fingered grasping for unknown objects. A video of the experiments is available at //youtu.be/5Ou6V_QMrNY.

One of the challenges in robotics is to enable robotic units with the reasoning capability that would be robust enough to execute complex tasks in dynamic environments. Recent advances in LLMs have positioned them as go-to tools for simple reasoning tasks, motivating the pioneering work of Liang et al. [35] that uses an LLM to translate natural language commands into low-level static execution plans for robotic units. Using LLMs inside robotics systems brings their generalization to a new level, enabling zero-shot generalization to new tasks. This paper extends this prior work to dynamic environments. We propose InCoRo, a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot. Our system continuously analyzes the state of the environment and provides adapted execution commands, enabling the robot to adjust to changing environmental conditions and correcting for controller errors. Our system does not require any iterative optimization to learn to accomplish a task as it leverages in-context learning with an off-the-shelf LLM model. Through an extensive validation process involving two standardized industrial robotic units -- SCARA and DELTA types -- we contribute knowledge about these robots, not popular in the community, thereby enriching it. We highlight the generalization capabilities of our system and show that (1) in-context learning in combination with the current state-of-the-art LLMs is an effective way to implement a robotic controller; (2) in static environments, InCoRo surpasses the prior art in terms of the success rate; (3) in dynamic environments, we establish new state-of-the-art for the SCARA and DELTA units, respectively. This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.

Driven by the rapid ascent of artificial intelligence (AI), organizations are at the epicenter of a seismic shift, facing a crucial question: How can AI be successfully integrated into existing operations? To help answer it, manage expectations and mitigate frustration, this article introduces Computational Management, a systematic approach to task automation for enhancing the ability of organizations to harness AI's potential within existing workflows. Computational Management acts as a bridge between the strategic insights of management science with the analytical rigor of computational thinking. The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow. Such procedures focus on task (re)formulation, on the assessment of the automation potential of tasks, on the completion of task specification templates for AI selection and adaptation. Included in the article there are manual and automated methods, with prompt suggestions for publicly available LLMs, to complete these three procedures. The first procedure, task (re)formulation, focuses on breaking down work activities into basic units, so they can be completed by one agent, involve a single well-defined action, and produce a distinct outcome. The second, allows the assessment of the granular task and its suitability for automation, using the Task Automation Index to rank tasks based on whether they have standardized input, well-defined rules, repetitiveness, data dependency, and objective outputs. The third, focuses on a task specification template which details information on 16 critical components of tasks, and can be used as a checklist to select or adapt the most suitable AI solution for integration into existing workflows. Computational Management provides a roadmap and a toolkit for humans and AI to thrive together, while enhancing organizational efficiency and innovation.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

北京阿比特科技有限公司