The increasing penetration of distributed energy resources in low-voltage networks is turning end-users from consumers to prosumers. However, the incomplete smart meter rollout and paucity of smart meter data due to the regulatory separation between retail and network service provision make active distribution network management difficult. Furthermore, distribution network operators oftentimes do not have access to real-time smart meter data, which creates an additional challenge. For the lack of better solutions, they use blanket rooftop solar export limits, leading to suboptimal outcomes. To address this, we designed a conditional generative adversarial network (CGAN)-based model to forecast household solar generation and electricity demand, which serves as an input to chance-constrained optimal power flow used to compute fair operating envelopes under uncertainty.
We present a method for generating possible proofs of a query with respect to a given Answer Set Programming (ASP) rule set using an abductive process where the space of abducibles is automatically constructed just from the input rules alone. Given a (possibly empty) set of user provided facts, our method infers any additional facts that may be needed for the entailment of a query and then outputs these extra facts, without the user needing to explicitly specify the space of all abducibles. We also present a method to generate a set of directed edges corresponding to the justification graph for the query. Furthermore, through different forms of implicit term substitution, our method can take user provided facts into account and suitably modify the abductive solutions. Past work on abduction has been primarily based on goal directed methods. However these methods can result in solvers that are not truly declarative. Much less work has been done on realizing abduction in a bottom up solver like the Clingo ASP solver. We describe novel ASP programs which can be run directly in Clingo to yield the abductive solutions and directed edge sets without needing to modify the underlying solving engine.
Electric vehicles (EVs) are key to alleviate our dependency on fossil fuels. The future smart grid is expected to be populated by millions of EVs equipped with high-demand batteries. To avoid an overload of the (current) electricity grid, expensive upgrades are required. Some of the upgrades can be averted if users of EVs participate to energy balancing mechanisms, for example through bidirectional EV charging. As the proliferation of consumer Internet-connected devices increases, including EV smart charging stations, their security against cyber-attacks and the protection of private data become a growing concern. We need to properly adapt and develop our current technology that must tackle the security challenges in the EV charging infrastructure, which go beyond the traditional technical applications in the domain of energy and transport networks. Security must balance with other desirable qualities such as interoperability, crypto-agility and energy efficiency. Evidence suggests a gap in the current awareness of cyber security in EV charging infrastructures. This paper fills this gap by providing the most comprehensive to date overview of privacy and security challenges To do so, we review communication protocols used in its ecosystem and provide a suggestion of security tools that might be used for future research.
This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function (Stein, 1999, Section 6.7) with Fourier coefficients $\phi$($\alpha$^2 + j^2)^(--$\nu$--1/2). Convergence rates are studied for the joint maximum likelihood estimation of $\nu$ and $\phi$ when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a ''deterministic'' element of a continuous Sobolev space is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.
Iterative linear quadratic regulator (iLQR) has gained wide popularity in addressing trajectory optimization problems with nonlinear system models. However, as a model-based shooting method, it relies heavily on an accurate system model to update the optimal control actions and the trajectory determined with forward integration, thus becoming vulnerable to inevitable model inaccuracies. Recently, substantial research efforts in learning-based methods for optimal control problems have been progressing significantly in addressing unknown system models, particularly when the system has complex interactions with the environment. Yet a deep neural network is normally required to fit substantial scale of sampling data. In this work, we present Neural-iLQR, a learning-aided shooting method over the unconstrained control space, in which a neural network with a simple structure is used to represent the local system model. In this framework, the trajectory optimization task is achieved with simultaneous refinement of the optimal policy and the neural network iteratively, without relying on the prior knowledge of the system model. Through comprehensive evaluations on two illustrative control tasks, the proposed method is shown to outperform the conventional iLQR significantly in the presence of inaccuracies in system models.
With the booming growth of advanced digital technologies, it has become possible for users as well as distributors of energy to obtain detailed and timely information about the electricity consumption of households. These technologies can also be used to forecast the household's electricity consumption (a.k.a. the load). In this paper, we investigate the use of Variational Mode Decomposition and deep learning techniques to improve the accuracy of the load forecasting problem. Although this problem has been studied in the literature, selecting an appropriate decomposition level and a deep learning technique providing better forecasting performance have garnered comparatively less attention. This study bridges this gap by studying the effect of six decomposition levels and five distinct deep learning networks. The raw load profiles are first decomposed into intrinsic mode functions using the Variational Mode Decomposition in order to mitigate their non-stationary aspect. Then, day, hour, and past electricity consumption data are fed as a three-dimensional input sequence to a four-level Wavelet Decomposition Network model. Finally, the forecast sequences related to the different intrinsic mode functions are combined to form the aggregate forecast sequence. The proposed method was assessed using load profiles of five Moroccan households from the Moroccan buildings' electricity consumption dataset (MORED) and was benchmarked against state-of-the-art time-series models and a baseline persistence model.
In recent years, deep learning has been a topic of interest in almost all disciplines due to its impressive empirical success in analyzing complex data sets, such as imaging, genetics, climate, and medical data. While most of the developments are treated as black-box machines, there is an increasing interest in interpretable, reliable, and robust deep learning models applicable to a broad class of applications. Feature-selected deep learning is proven to be promising in this regard. However, the recent developments do not address the situations of ultra-high dimensional and highly correlated feature selection in addition to the high noise level. In this article, we propose a novel screening and cleaning strategy with the aid of deep learning for the cluster-level discovery of highly correlated predictors with a controlled error rate. A thorough empirical evaluation over a wide range of simulated scenarios demonstrates the effectiveness of the proposed method by achieving high power while having a minimal number of false discoveries. Furthermore, we implemented the algorithm in the riboflavin (vitamin $B_2$) production dataset in the context of understanding the possible genetic association with riboflavin production. The gain of the proposed methodology is illustrated by achieving lower prediction error compared to other state-of-the-art methods.
This paper considers distributed M-estimation under heterogeneous distributions among distributed data blocks. A weighted distributed estimator is proposed to improve the efficiency of the standard "Split-And-Conquer" (SaC) estimator for the common parameter shared by all the data blocks. The weighted distributed estimator is shown to be at least as efficient as the would-be full sample and the generalized method of moment estimators with the latter two estimators requiring full data access. A bias reduction is formulated to the WD estimator to accommodate much larger numbers of data blocks than the existing methods without sacrificing the estimation efficiency, and a similar debiased operation is made to the SaC estimator. The mean squared error (MSE) bounds and the asymptotic distributions of the WD and the two debiased estimators are derived, which shows advantageous performance of the debiased estimators when the number of data blocks is large.
Effective surveillance on the long-term public health impact due to war and terrorist attacks remain limited. Such health issues are commonly under-reported, specifically for a large group of individuals. For this purpose, efficient estimation of the size of the population under the risk of physical and mental health hazards is of utmost necessity. In this context, multiple system estimation is a potential strategy that has recently been applied to quantify under-reported events allowing heterogeneity among the individuals and dependence between the sources of information. To model such complex phenomena, a novel trivariate Bernoulli model is developed, and an estimation methodology using Monte Carlo based EM algorithm is proposed which successfully overcomes the identifiability issue present in the model. Simulation results show superiority of the performance of the proposed method over existing competitors and robustness under model mis-specifications. The method is applied to analyze real case studies on the Gulf War and 9/11 Terrorist Attack at World Trade Center, US. Estimates of the incident rate and survival rate are computed by adjusting the undercount estimates for an unbiased evaluation of the post-war syndromes. The results provide interesting insights that can assist in effective decision making and policy formulation for monitoring the health status of post-war survivors.
We study the problem of estimating an unknown parameter in a distributed and online manner. Existing work on distributed online learning typically either focuses on asymptotic analysis, or provides bounds on regret. However, these results may not directly translate into bounds on the error of the learned model after a finite number of time-steps. In this paper, we propose a distributed online estimation algorithm which enables each agent in a network to improve its estimation accuracy by communicating with neighbors. We provide non-asymptotic bounds on the estimation error, leveraging the statistical properties of the underlying model. Our analysis demonstrates a trade-off between estimation error and communication costs. Further, our analysis allows us to determine a time at which the communication can be stopped (due to the costs associated with communications), while meeting a desired estimation accuracy. We also provide a numerical example to validate our results.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.