The efficient exploration of chemical space to design molecules with intended properties enables the accelerated discovery of drugs, materials, and catalysts, and is one of the most important outstanding challenges in chemistry. Encouraged by the recent surge in computer power and artificial intelligence development, many algorithms have been developed to tackle this problem. However, despite the emergence of many new approaches in recent years, comparatively little progress has been made in developing realistic benchmarks that reflect the complexity of molecular design for real-world applications. In this work, we develop a set of practical benchmark tasks relying on physical simulation of molecular systems mimicking real-life molecular design problems for materials, drugs, and chemical reactions. Additionally, we demonstrate the utility and ease of use of our new benchmark set by demonstrating how to compare the performance of several well-established families of algorithms. Surprisingly, we find that model performance can strongly depend on the benchmark domain. We believe that our benchmark suite will help move the field towards more realistic molecular design benchmarks, and move the development of inverse molecular design algorithms closer to designing molecules that solve existing problems in both academia and industry alike.
The lattice Boltzmann method (LBM) has emerged as a prominent technique for solving fluid dynamics problems due to its algorithmic potential for computational scalability. We introduce XLB framework, a Python-based differentiable LBM library which harnesses the capabilities of the JAX framework. The architecture of XLB is predicated upon ensuring accessibility, extensibility, and computational performance, enabling scaling effectively across CPU, multi-GPU, and distributed multi-GPU systems. The framework can be readily augmented with novel boundary conditions, collision models, or simulation capabilities. XLB offers the unique advantage of integration with JAX's extensive machine learning echosystem, and the ability to utilize automatic differentiation for tackling physics-based machine learning, optimization, and inverse problems. XLB has been successfully scaled to handle simulations with billions of cells, achieving giga-scale lattice updates per second. XLB is released under the permissive Apache-2.0 license and is available on GitHub at //github.com/Autodesk/XLB.
In the context of deep learning research, where model introductions continually occur, the need for effective and efficient evaluation remains paramount. Existing methods often emphasize accuracy metrics, overlooking stability. To address this, the paper introduces the Accuracy-Stability Index (ASI), a quantitative measure incorporating both accuracy and stability for assessing deep learning models. Experimental results demonstrate the application of ASI, and a 3D surface model is presented for visualizing ASI, mean accuracy, and coefficient of variation. This paper addresses the important issue of quantitative benchmarking metrics for deep learning models, providing a new approach for accurately evaluating accuracy and stability of deep learning models. The paper concludes with discussions on potential weaknesses and outlines future research directions.
Current methods based on Neural Radiance Fields (NeRF) significantly lack the capacity to quantify uncertainty in their predictions, particularly on the unseen space including the occluded and outside scene content. This limitation hinders their extensive applications in robotics, where the reliability of model predictions has to be considered for tasks such as robotic exploration and planning in unknown environments. To address this, we propose a novel approach to estimate a 3D Uncertainty Field based on the learned incomplete scene geometry, which explicitly identifies these unseen regions. By considering the accumulated transmittance along each camera ray, our Uncertainty Field infers 2D pixel-wise uncertainty, exhibiting high values for rays directly casting towards occluded or outside the scene content. To quantify the uncertainty on the learned surface, we model a stochastic radiance field. Our experiments demonstrate that our approach is the only one that can explicitly reason about high uncertainty both on 3D unseen regions and its involved 2D rendered pixels, compared with recent methods. Furthermore, we illustrate that our designed uncertainty field is ideally suited for real-world robotics tasks, such as next-best-view selection.
The neutral atom array has gained prominence in quantum computing for its scalability and operation fidelity. Previous works focus on \textit{fixed} atom arrays (FAA) that necessitate extensive SWAP operations for long-range interactions. This work explores a novel architecture known as \textit{field programmable qubit array (FPQA)}, which uniquely allows for coherent atom movements during circuit execution and significantly \textit{reduces the cost of long-range interactions}. However, the atom movements have multiple hardware constraints, making movement scheduling very challenging. In this work, we introduce FPQA-C, a compilation framework tailored for qubit mapping, atom movement, and gate scheduling of FPQA. It contains a qubit-array mapper to decide the coarse-grained mapping of qubit to arrays, leveraging MAX k-Cut on a constructed gate frequency graph to minimize SWAP overhead. Subsequently, a qubit-atom mapper determines the fine-grained mapping of qubits to specific atoms in the array, and considers load balance to prevent hardware constraint violations. We further propose a high-parallelism router that iteratively identifies parallelizable 2Q gates and decide the atom movements and gate executions, thus improving the parallelism. Besides, for fault-tolerant computing with FPQA, we provide comprehensive simulations evaluating logical error rates, execution times, physical qubit requirements, code distances, and bandwidth. We rigorously assess FPQA-C across 20+ diverse benchmarks, including generic circuits (arbitrary, QASMBench, SupermarQ), Quantum Simulation, and QAOA circuits. FPQA-C consistently outperforms the IBM Superconducting, FAA with long-range gates, FAA with rectangular and triangular topologies, achieving 2Q gate reductions by factors of 5.3x, 3.2x, 3.4x, and 2.6x, and circuit depth reductions by factors of 3.6x, 3.2x, 3.1x, and 2.2x, respectively.
Greenhouse gases are pivotal drivers of climate change, necessitating precise quantification and source identification to foster mitigation strategies. We introduce GeoViT, a compact vision transformer model adept in processing satellite imagery for multimodal segmentation, classification, and regression tasks targeting CO2 and NO2 emissions. Leveraging GeoViT, we attain superior accuracy in estimating power generation rates, fuel type, plume coverage for CO2, and high-resolution NO2 concentration mapping, surpassing previous state-of-the-art models while significantly reducing model size. GeoViT demonstrates the efficacy of vision transformer architectures in harnessing satellite-derived data for enhanced GHG emission insights, proving instrumental in advancing climate change monitoring and emission regulation efforts globally.
Automatic differentiation (AD) is a critical step in physics-informed machine learning, required for computing the high-order derivatives of network output w.r.t. coordinates of collocation points. In this paper, we present a novel and lightweight algorithm to conduct AD for physics-informed operator learning, which we call the trick of Zero Coordinate Shift (ZCS). Instead of making all sampled coordinates as leaf variables, ZCS introduces only one scalar-valued leaf variable for each spatial or temporal dimension, simplifying the wanted derivatives from "many-roots-many-leaves" to "one-root-many-leaves" whereby reverse-mode AD becomes directly utilisable. It has led to an outstanding performance leap by avoiding the duplication of the computational graph along the dimension of functions (physical parameters). ZCS is easy to implement with current deep learning libraries; our own implementation is achieved by extending the DeepXDE package. We carry out a comprehensive benchmark analysis and several case studies, training physics-informed DeepONets to solve partial differential equations (PDEs) without data. The results show that ZCS has persistently reduced GPU memory consumption and wall time for training by an order of magnitude, and such reduction factor scales with the number of functions. As a low-level optimisation technique, ZCS imposes no restrictions on data, physics (PDE) or network architecture and does not compromise training results from any aspect.
This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.