The neutral atom array has gained prominence in quantum computing for its scalability and operation fidelity. Previous works focus on \textit{fixed} atom arrays (FAA) that necessitate extensive SWAP operations for long-range interactions. This work explores a novel architecture known as \textit{field programmable qubit array (FPQA)}, which uniquely allows for coherent atom movements during circuit execution and significantly \textit{reduces the cost of long-range interactions}. However, the atom movements have multiple hardware constraints, making movement scheduling very challenging. In this work, we introduce FPQA-C, a compilation framework tailored for qubit mapping, atom movement, and gate scheduling of FPQA. It contains a qubit-array mapper to decide the coarse-grained mapping of qubit to arrays, leveraging MAX k-Cut on a constructed gate frequency graph to minimize SWAP overhead. Subsequently, a qubit-atom mapper determines the fine-grained mapping of qubits to specific atoms in the array, and considers load balance to prevent hardware constraint violations. We further propose a high-parallelism router that iteratively identifies parallelizable 2Q gates and decide the atom movements and gate executions, thus improving the parallelism. Besides, for fault-tolerant computing with FPQA, we provide comprehensive simulations evaluating logical error rates, execution times, physical qubit requirements, code distances, and bandwidth. We rigorously assess FPQA-C across 20+ diverse benchmarks, including generic circuits (arbitrary, QASMBench, SupermarQ), Quantum Simulation, and QAOA circuits. FPQA-C consistently outperforms the IBM Superconducting, FAA with long-range gates, FAA with rectangular and triangular topologies, achieving 2Q gate reductions by factors of 5.3x, 3.2x, 3.4x, and 2.6x, and circuit depth reductions by factors of 3.6x, 3.2x, 3.1x, and 2.2x, respectively.
Recently, in-memory analog matrix computing (AMC) with nonvolatile resistive memory has been developed for solving matrix problems in one step, e.g., matrix inversion of solving linear systems. However, the analog nature sets up a barrier to the scalability of AMC, due to the limits on the manufacturability and yield of resistive memory arrays, non-idealities of device and circuit, and cost of hardware implementations. Aiming to deliver a scalable AMC approach for solving linear systems, this work presents BlockAMC, which partitions a large original matrix into smaller ones on different memory arrays. A macro is designed to perform matrix inversion and matrix-vector multiplication with the block matrices, obtaining the partial solutions to recover the original solution. The size of block matrices can be exponentially reduced by performing multiple stages of divide-and-conquer, resulting in a two-stage solver design that enhances the scalability of this approach. BlockAMC is also advantageous in alleviating the accuracy issue of AMC, especially in the presence of device and circuit non-idealities, such as conductance variations and interconnect resistances. Compared to a single AMC circuit solving the same problem, BlockAMC improves the area and energy efficiency by 48.83% and 40%, respectively.
Arbitrary shape scene text detection is of great importance in scene understanding tasks. Due to the complexity and diversity of text in natural scenes, existing scene text algorithms have limited accuracy for detecting arbitrary shape text. In this paper, we propose a novel arbitrary shape scene text detector through boundary points dynamic optimization(BPDO). The proposed model is designed with a text aware module (TAM) and a boundary point dynamic optimization module (DOM). Specifically, the model designs a text aware module based on segmentation to obtain boundary points describing the central region of the text by extracting a priori information about the text region. Then, based on the idea of deformable attention, it proposes a dynamic optimization model for boundary points, which gradually optimizes the exact position of the boundary points based on the information of the adjacent region of each boundary point. Experiments on CTW-1500, Total-Text, and MSRA-TD500 datasets show that the model proposed in this paper achieves a performance that is better than or comparable to the state-of-the-art algorithm, proving the effectiveness of the model.
A key challenge for ultra-low-power (ULP) devices is handling peripheral linking, where the main central processing unit (CPU) periodically mediates the interaction among multiple peripherals following wake-up events. Current solutions address this problem by either integrating event interconnects that route single-wire event lines among peripherals or by general-purpose I/O processors, with a strong trade-off between the latency, efficiency of the former, and the flexibility of the latter. In this paper, we present an open-source, peripheral-agnostic, lightweight, and flexible Peripheral Event Linking System (PELS) that combines dedicated event routing with a tiny I/O processor. With the proposed approach, the power consumption of a linking event is reduced by 2.5 times compared to a baseline relying on the main core for the event-linking process, at a low area of just 7 kGE in its minimal configuration, when integrated into a ULP RISC-V IoT processor.
Statistical hypothesis testing and effect size measurement are routine parts of quantitative research. Advancements in computer processing power have greatly improved the capability of statistical inference through the availability of resampling methods. However, many of the statistical practices used today are based on traditional, parametric methods that rely on assumptions about the underlying population. These assumptions may not always be valid, leading to inaccurate results and misleading interpretations. Permutation testing, on the other hand, generates the sampling distribution empirically by permuting the observed data, providing distribution-free hypothesis testing. Furthermore, this approach lends itself to a powerful method for multiple comparison correction - known as max correction - which is less prone to type II errors than conventional correction methods. Parametric methods have also traditionally been utilized for estimating the confidence interval of various test statistics and effect size measures. However, these too can be estimated empirically using permutation or bootstrapping techniques. Whilst resampling methods are generally considered preferable, many popular programming languages and statistical software packages lack efficient implementations. Here, we introduce PERMUTOOLS, a MATLAB package for multivariate permutation testing and effect size measurement.
Modern speech processing systems rely on self-attention. Unfortunately, token mixing with self-attention takes quadratic time in the length of the speech utterance, slowing down inference as well as training and increasing memory consumption. Cheaper alternatives to self-attention for ASR have been developed, but they fail to consistently reach the same level of accuracy. This paper, therefore, proposes a novel linear-time alternative to self-attention. It summarises an utterance with the mean over vectors for all time steps. This single summary is then combined with time-specific information. We call this method "SummaryMixing". Introducing SummaryMixing in state-of-the-art ASR models makes it feasible to preserve or exceed previous speech recognition performance while lowering the training and inference times by up to 28$\%$ and reducing the memory budget by a factor of two. The benefits of SummaryMixing can also be generalized to other speech-processing tasks, such as speech understanding.
One of the most promising applications of quantum computers is to simulate quantum mechanical systems and deliver an advantage to classical computation by leveraging their inherent quantum behaviour. In this work, we present a new approach to achieve a noise tolerant Hamiltonian simulation algorithm for ground state energy estimation which also surmounts stochastic limitations most of its counterparts face. This algorithm is based on an adaptive set of fuzzy bisection searches to estimate the ground state energy digit by digit that can get to any arbitrary target precision. It builds upon the Quantum Eigenvalue Transformation of Unitary Matrices (QETU) algorithm and it delivers good approximations in simulations with quantum depolarizing probability up to 1e-3, particularly for the Transverse-Field Ising Model (TFIM). We ran simulations with different system Hamiltonians, system sizes and time evolution encoding methods on IBM Qiskit and we demonstrate the key results in this work, as well as compare the performance with other existing methods.
Symmetries of input and latent vectors have provided valuable insights for disentanglement learning in VAEs.However, only a few works were proposed as an unsupervised method, and even these works require known factor information in training data. We propose a novel method, Composite Factor-Aligned Symmetry Learning (CFASL), which is integrated into VAEs for learning symmetry-based disentanglement in unsupervised learning without any knowledge of the dataset factor information.CFASL incorporates three novel features for learning symmetry-based disentanglement: 1) Injecting inductive bias to align latent vector dimensions to factor-aligned symmetries within an explicit learnable symmetry codebook 2) Learning a composite symmetry to express unknown factors change between two random samples by learning factor-aligned symmetries within the codebook 3) Inducing group equivariant encoder and decoder in training VAEs with the two conditions. In addition, we propose an extended evaluation metric for multi-factor changes in comparison to disentanglement evaluation in VAEs. In quantitative and in-depth qualitative analysis, CFASL demonstrates a significant improvement of disentanglement in single-factor change, and multi-factor change conditions compared to state-of-the-art methods.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.