亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a constructive characterization of matrices satisfying the reverse-order law for the Moore--Penrose pseudoinverse. In particular, for a given matrix $A$ we construct another matrix $B$, of arbitrary compatible size and chosen rank, in terms of the right singular vectors of $A$, such that the reverse order law for $AB$ is satisfied. Moreover, we show that any matrix satisfying this law comes from a similar construction. As a consequence, several equivalent conditions to $B^+ A^+$ being a pseudoinverse of $AB$ are given, for example $\mathcal{C}(A^*AB)=\mathcal{C}(BB^*A^*)$ or $B\left(AB\right)^+A$ being an orthogonal projection. In addition, we parameterize all possible SVD decompositions of a fixed matrix and give Greville-like equivalent conditions for $B^+A^+$ being a $\{1,2\}-$inverse of $AB$, with a geometric insight in terms of the principal angles between $\mathcal{C}(A^*)$ and $\mathcal{C}(B)$.

相關內容

We study the trajectory of iterations and the convergence rates of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR). The fundamental goal of MLR is to learn the regression models from unlabeled observations. The EM algorithm finds extensive applications in solving the mixture of linear regressions. Recent results have established the super-linear convergence of EM for 2MLR in the noiseless and high SNR settings under some assumptions and its global convergence rate with random initialization has been affirmed. However, the exponent of convergence has not been theoretically estimated and the geometric properties of the trajectory of EM iterations are not well-understood. In this paper, first, using Bessel functions we provide explicit closed-form expressions for the EM updates under all SNR regimes. Then, in the noiseless setting, we completely characterize the behavior of EM iterations by deriving a recurrence relation at the population level and notably show that all the iterations lie on a certain cycloid. Based on this new trajectory-based analysis, we exhibit the theoretical estimate for the exponent of super-linear convergence and further improve the statistical error bound at the finite-sample level. Our analysis provides a new framework for studying the behavior of EM for Mixed Linear Regression.

The criticality problem in nuclear engineering asks for the principal eigen-pair of a Boltzmann operator describing neutron transport in a reactor core. Being able to reliably design, and control such reactors requires assessing these quantities within quantifiable accuracy tolerances. In this paper we propose a paradigm that deviates from the common practice of approximately solving the corresponding spectral problem with a fixed, presumably sufficiently fine discretization. Instead, the present approach is based on first contriving iterative schemes, formulated in function space, that are shown to converge at a quantitative rate without assuming any a priori excess regularity properties, and that exploit only properties of the optical parameters in the underlying radiative transfer model. We develop the analytical and numerical tools for approximately realizing each iteration step withing judiciously chosen accuracy tolerances, verified by a posteriori estimates, so as to still warrant quantifiable convergence to the exact eigen-pair. This is carried out in full first for a Newton scheme. Since this is only locally convergent we analyze in addition the convergence of a power iteration in function space to produce sufficiently accurate initial guesses. Here we have to deal with intrinsic difficulties posed by compact but unsymmetric operators preventing standard arguments used in the finite dimensional case. Our main point is that we can avoid any condition on an initial guess to be already in a small neighborhood of the exact solution. We close with a discussion of remaining intrinsic obstructions to a certifiable numerical implementation, mainly related to not knowing the gap between the principal eigenvalue and the next smaller one in modulus.

This paper presents an efficient algorithm for the approximation of the rank-one convex hull in the context of nonlinear solid mechanics. It is based on hierarchical rank-one sequences and simultaneously provides first and second derivative information essential for the calculation of mechanical stresses and the computational minimization of discretized energies. For materials, whose microstructure can be well approximated in terms of laminates and where each laminate stage achieves energetic optimality with respect to the current stage, the approximate envelope coincides with the rank-one convex envelope. Although the proposed method provides only an upper bound for the rank-one convex hull, a careful examination of the resulting constraints shows a decent applicability in mechanical problems. Various aspects of the algorithm are discussed, including the restoration of rotational invariance, microstructure reconstruction, comparisons with other semi-convexification algorithms, and mesh independency. Overall, this paper demonstrates the efficiency of the algorithm for both, well-established mathematical benchmark problems as well as nonconvex isotropic finite-strain continuum damage models in two and three dimensions. Thereby, for the first time, a feasible concurrent numerical relaxation is established for an incremental, dissipative large-strain model with relevant applications in engineering problems.

This is a survey article based on the content of the plenary lecture given by Jos\'e A. Carrillo at the ICIAM23 conference in Tokyo. It is devoted to produce a snapshot of the state of the art in the analysis, numerical analysis, simulation, and applications of the vast area of aggregation-diffusion equations. We also discuss the implications in mathematical biology explaining cell sorting in tissue growth as an example of this modelling framework. This modelling strategy is quite successful in other timely applications such as global optimisation, parameter estimation and machine learning.

We present a new numerical model for solving the Chew-Goldberger-Low system of equations describing a bi-Maxwellian plasma in a magnetic field. Heliospheric and geospace environments are often observed to be in an anisotropic state with distinctly different parallel and perpendicular pressure components. The CGL system represents the simplest leading order correction to the common isotropic MHD model that still allows to incorporate the latter's most desirable features. However, the CGL system presents several numerical challenges: the system is not in conservation form, the source terms are stiff, and unlike MHD it is prone to a loss of hyperbolicity if the parallel and perpendicular pressures become too different. The usual cure is to bring the parallel and perpendicular pressures closer to one another; but that has usually been done in an ad hoc manner. We present a physics-informed method of pressure relaxation based on the idea of pitch-angle scattering that keeps the numerical system hyperbolic and naturally leads to zero anisotropy in the limit of very large plasma beta. Numerical codes based on the CGL equations can, therefore, be made to function robustly for any magnetic field strength, including the limit where the magnetic field approaches zero. The capabilities of our new algorithm are demonstrated using several stringent test problems that provide a comparison of the CGL equations in the weakly and strongly collisional limits. This includes a test problem that mimics interaction of a shock with a magnetospheric environment in 2D.

We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.

We introduce the concept of inverse feasibility for linear forward models as a tool to enhance OTA FL algorithms. Inverse feasibility is defined as an upper bound on the condition number of the forward operator as a function of its parameters. We analyze an existing OTA FL model using this definition, identify areas for improvement, and propose a new OTA FL model. Numerical experiments illustrate the main implications of the theoretical results. The proposed framework, which is based on inverse problem theory, can potentially complement existing notions of security and privacy by providing additional desirable characteristics to networks.

A white noise signal can access any possible configuration of values, though statistically over many samples tends to a uniform spectral distribution, and is highly unlikely to produce intelligible sound. But how unlikely? The probability that white noise generates a music-like signal over different durations is analyzed, based on some necessary features observed in real music audio signals such as mostly proximate movement and zero crossing rate. Given the mathematical results, the rarity of music as a signal is considered overall. The applicability of this study is not just to show that music has a precious rarity value, but that examination of the size of music relative to the overall size of audio signal space provides information to inform new generations of algorithmic music system (which are now often founded on audio signal generation directly, and may relate to white noise via such machine learning processes as diffusion). Estimated upper bounds on the rarity of music to the size of various physical and musical spaces are compared, to better understand the magnitude of the results (pun intended). Underlying the research are the questions `how much music is still out there?' and `how much music could a machine learning process actually reach?'.

We consider the problem of model selection in a high-dimensional sparse linear regression model under privacy constraints. We propose a differentially private best subset selection method with strong utility properties by adopting the well-known exponential mechanism for selecting the best model. We propose an efficient Metropolis-Hastings algorithm and establish that it enjoys polynomial mixing time to its stationary distribution. Furthermore, we also establish approximate differential privacy for the estimates of the mixed Metropolis-Hastings chain. Finally, we perform some illustrative experiments that show the strong utility of our algorithm.

We show that the greedy algorithm for adaptive-submodular cover has approximation ratio at least 1.3*(1+ln Q). Moreover, the instance demonstrating this gap has Q=1. So, it invalidates a prior result in the paper ``Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization'' by Golovin-Krause, that claimed a (1+ln Q)^2 approximation ratio for the same algorithm.

北京阿比特科技有限公司