亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the current landscape of online abuses and harms, effective content moderation is necessary to cultivate safe and inclusive online spaces. Yet, the effectiveness of many moderation interventions is still unclear. Here, we assess the effectiveness of The Great Ban, a massive deplatforming operation that affected nearly 2,000 communities on Reddit. By analyzing 16M comments posted by 17K users during 14 months, we provide nuanced results on the effects, both desired and otherwise, of the ban. Among our main findings is that 15.6% of the affected users left Reddit and that those who remained reduced their toxicity by 6.6% on average. The ban also caused 5% users to increase their toxicity by more than 70% of their pre-ban level. However, these resentful users likely had limited impact on Reddit due to low activity and little support by peers. Overall, our multifaceted results provide new insights into the efficacy of deplatforming. Our findings can inform the development of future moderation interventions and the policing of online platforms.

相關內容

Existing learned video compression models employ flow net or deformable convolutional networks (DCN) to estimate motion information. However, the limited receptive fields of flow net and DCN inherently direct their attentiveness towards the local contexts. Global contexts, such as large-scale motions and global correlations among frames are ignored, presenting a significant bottleneck for capturing accurate motions. To address this issue, we propose a joint local and global motion compensation module (LGMC) for leaned video coding. More specifically, we adopt flow net for local motion compensation. To capture global context, we employ the cross attention in feature domain for motion compensation. In addition, to avoid the quadratic complexity of vanilla cross attention, we divide the softmax operations in attention into two independent softmax operations, leading to linear complexity. To validate the effectiveness of our proposed LGMC, we integrate it with DCVC-TCM and obtain learned video compression with joint local and global motion compensation (LVC-LGMC). Extensive experiments demonstrate that our LVC-LGMC has significant rate-distortion performance improvements over baseline DCVC-TCM.

The proliferation of mobile devices and social media has revolutionized content dissemination, with short-form video becoming increasingly prevalent. This shift has introduced the challenge of video reframing to fit various screen aspect ratios, a process that highlights the most compelling parts of a video. Traditionally, video reframing is a manual, time-consuming task requiring professional expertise, which incurs high production costs. A potential solution is to adopt some machine learning models, such as video salient object detection, to automate the process. However, these methods often lack generalizability due to their reliance on specific training data. The advent of powerful large language models (LLMs) open new avenues for AI capabilities. Building on this, we introduce Reframe Any Video Agent (RAVA), a LLM-based agent that leverages visual foundation models and human instructions to restructure visual content for video reframing. RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video. Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.

In today's digital age, images have emerged as powerful tools for politicians to engage with their voters on social media platforms. Visual content possesses a unique emotional appeal that often leads to increased user engagement. However, research on visual communication remains relatively limited, particularly in the Global South. This study aims to bridge this gap by employing a combination of computational methods and qualitative approach to investigate the visual communication strategies employed in a dataset of 11,263 Instagram posts by 19 Brazilian presidential candidates in 2018 and 2022 national elections. Through two studies, we observed consistent patterns across these candidates on their use of visual political communication. Notably, we identify a prevalence of celebratory and positively toned images. They also exhibit a strong sense of personalization, portraying candidates connected with their voters on a more emotional level. Our research also uncovers unique contextual nuances specific to the Brazilian political landscape. We note a substantial presence of screenshots from news websites and other social media platforms. Furthermore, text-edited images with portrayals emerge as a prominent feature. In light of these results, we engage in a discussion regarding the implications for the broader field of visual political communication. This article serves as a testament to the pivotal role that Instagram has played in shaping the narrative of two fiercely polarized Brazilian elections, casting a revealing light on the ever-evolving dynamics of visual political communication in the digital age. Finally, we propose avenues for future research in the realm of visual political communication.

Using stickers in online chatting is very prevalent on social media platforms, where the stickers used in the conversation can express someone's intention/emotion/attitude in a vivid, tactful, and intuitive way. Existing sticker retrieval research typically retrieves stickers based on context and the current utterance delivered by the user. That is, the stickers serve as a supplement to the current utterance. However, in the real-world scenario, using stickers to express what we want to say rather than as a supplement to our words only is also important. Therefore, in this paper, we create a new dataset for sticker retrieval in conversation, called StickerInt, where stickers are used to reply to previous conversations or supplement our words. Based on the created dataset, we present a simple yet effective framework for sticker retrieval in conversation based on the learning of intention and the cross-modal relationships between conversation context and stickers, coined as \textbf{Int-RA}. Specifically, we first devise a knowledge-enhanced intention predictor to introduce the intention information into the conversation representations. Subsequently, a relation-aware sticker selector is devised to retrieve the response sticker via cross-modal relationships. Extensive experiments on the created dataset show that the proposed model achieves state-of-the-art performance in sticker retrieval.

Changes in the timescales at which complex systems evolve are essential to predicting critical transitions and catastrophic failures. Disentangling the timescales of the dynamics governing complex systems remains a key challenge. With this study, we introduce an integrated Bayesian framework based on temporal network models to address this challenge. We focus on two methodologies: change point detection for identifying shifts in system dynamics, and a spectrum analysis for inferring the distribution of timescales. Applied to synthetic and empirical datasets, these methologies robustly identify critical transitions and comprehensively map the dominant and subsidiaries timescales in complex systems. This dual approach offers a powerful tool for analyzing temporal networks, significantly enhancing our understanding of dynamic behaviors in complex systems.

Filter bubbles have been studied extensively within the context of online content platforms due to their potential to cause undesirable outcomes such as user dissatisfaction or polarization. With the rise of short-video platforms, the filter bubble has been given extra attention because these platforms rely on an unprecedented use of the recommender system to provide relevant content. In our work, we investigate the deep filter bubble, which refers to the user being exposed to narrow content within their broad interests. We accomplish this using one-year interaction data from a top short-video platform in China, which includes hierarchical data with three levels of categories for each video. We formalize our definition of a "deep" filter bubble within this context, and then explore various correlations within the data: first understanding the evolution of the deep filter bubble over time, and later revealing some of the factors that give rise to this phenomenon, such as specific categories, user demographics, and feedback type. We observe that while the overall proportion of users in a filter bubble remains largely constant over time, the depth composition of their filter bubble changes. In addition, we find that some demographic groups that have a higher likelihood of seeing narrower content and implicit feedback signals can lead to less bubble formation. Finally, we propose some ways in which recommender systems can be designed to reduce the risk of a user getting caught in a bubble.

Professionally generated content (PGC) streamed online can contain visual artefacts that degrade the quality of user experience. These artefacts arise from different stages of the streaming pipeline, including acquisition, post-production, compression, and transmission. To better guide streaming experience enhancement, it is important to detect specific artefacts at the user end in the absence of a pristine reference. In this work, we address the lack of a comprehensive benchmark for artefact detection within streamed PGC, via the creation and validation of a large database, BVI-Artefact. Considering the ten most relevant artefact types encountered in video streaming, we collected and generated 480 video sequences, each containing various artefacts with associated binary artefact labels. Based on this new database, existing artefact detection methods are benchmarked, with results showing the challenging nature of this tasks and indicating the requirement of more reliable artefact detection methods. To facilitate further research in this area, we have made BVI-Artifact publicly available at //chenfeng-bristol.github.io/BVI-Artefact/

Investigating the increasingly popular domain of short video consumption, this study focuses on the impact of Opinion Polarization (OP), a significant factor in the digital landscape influencing public opinions and social interactions. We analyze OP's effect on viewers' perceptions and behaviors, finding that traditional feedback metrics like likes and watch time fail to fully capture and measure OP. Addressing this gap, our research utilizes Electroencephalogram (EEG) signals to introduce a novel, non-invasive approach for evaluating neural responses to OP, affecting perception and cognition. Empirical analysis reveals OP's considerable impact on viewers' emotions, evidenced by changes in brain activity. Our findings also highlight the potential of EEG data in predicting exposure to polarized short video content, offering a new perspective on the dynamics of short video consumption and a unique method for quantifying OP's effects.

By interacting, synchronizing, and cooperating with its physical counterpart in real time, digital twin is promised to promote an intelligent, predictive, and optimized modern city. Via interconnecting massive physical entities and their virtual twins with inter-twin and intra-twin communications, the Internet of digital twins (IoDT) enables free data exchange, dynamic mission cooperation, and efficient information aggregation for composite insights across vast physical/virtual entities. However, as IoDT incorporates various cutting-edge technologies to spawn the new ecology, severe known/unknown security flaws and privacy invasions of IoDT hinders its wide deployment. Besides, the intrinsic characteristics of IoDT such as \emph{decentralized structure}, \emph{information-centric routing} and \emph{semantic communications} entail critical challenges for security service provisioning in IoDT. To this end, this paper presents an in-depth review of the IoDT with respect to system architecture, enabling technologies, and security/privacy issues. Specifically, we first explore a novel distributed IoDT architecture with cyber-physical interactions and discuss its key characteristics and communication modes. Afterward, we investigate the taxonomy of security and privacy threats in IoDT, discuss the key research challenges, and review the state-of-the-art defense approaches. Finally, we point out the new trends and open research directions related to IoDT.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

北京阿比特科技有限公司