A non-orthogonal multiple access (NOMA) inspired integrated sensing and communication (ISAC) system is investigated. A dual-functional base station (BS) serves multiple communication users while sensing multiple targets, by transmitting the non-orthogonal superposition of the communication and sensing signals. A NOMA inspired interference cancellation scheme is proposed, where part of the dedicated sensing signal is treated as the virtual communication signals to be mitigated at each communication user via successive interference cancellation (SIC). Based on this framework, the transmitted communication and sensing signals are jointly optimized to match the desired sensing beampattern, while satisfying the minimum rate requirement and the SIC condition at the communication users. Then, the formulated non-convex optimization problem is solved by invoking the successive convex approximation (SCA) to obtain a near-optimal solution. The numerical results show the proposed NOMA-inspired ISAC system can achieve better performance than the conventional ISAC system and comparable performance to the ideal ISAC system where all sensing interference is assumed to be removed unconditionally.
We present a framework for operating a self-adaptive RIS inside a fading rich-scattering wireless environment. We model the rich-scattering wireless channel as being double-parametrized by (i) the RIS, and (ii) dynamic perturbers (moving objects, etc.). Within each coherence time, first, the self-adaptive RIS estimates the status of the dynamic perturbers (e.g., the perturbers' orientations and locations) based on measurements with an auxiliary wireless channel. Then, second, using a learned surrogate forward model of the mapping from RIS configuration and perturber status to wireless channel, an optimized RIS configuration to achieve a desired functionality is obtained. We demonstrate our technique using a physics-based end-to-end model of RIS-parametrized communication with adjustable fading (PhysFad) for the example objective of maximizing the received signal strength indicator. Our results present a route toward convergence of RIS-empowered localization and sensing with RIS-empowered channel shaping beyond the simple case of operation in free space without fading.
The reconfigurable intelligent surface (RIS) technology is a promising enabler for millimeter wave (mmWave) wireless communications, as it can potentially provide spectral efficiency comparable to the conventional massive multiple-input multiple-output (MIMO) but with significantly lower hardware complexity. In this paper, we focus on the estimation and projection of the uplink RIS-aided massive MIMO channel, which can be time-varying. We propose to let the user equipments (UE) transmit Zadoff-Chu (ZC) sequences and let the base station (BS) conduct maximum likelihood (ML) estimation of the uplink channel. The proposed scheme is computationally efficient: it uses ZC sequences to decouple the estimation of the frequency and time offsets; it uses the space-alternating generalized expectation-maximization (SAGE) method to reduce the high-dimensional problem due to the multipaths to multiple lower-dimensional ones per path. Owing to the estimation of the Doppler frequency offsets, the time-varying channel state can be projected, which can significantly lower the overhead of the pilots for channel estimation. The numerical simulations verify the effectiveness of the proposed scheme.
Simultaneously transmitting/refracting and reflecting reconfigurable intelligent surface (STAR-RIS) has been introduced to achieve full coverage area. This paper investigate the performance of STAR-RIS assisted non-orthogonal multiple access (NOMA) networks over Rician fading channels, where the incidence signals sent by base station are reflected and transmitted to the nearby user and distant user, respectively. To evaluate the performance of STAR-RIS-NOMA networks, we derive new exact and asymptotic expressions of outage probability and ergodic rate for a pair of users, in which the imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) schemes are taken into consideration. Based on the approximated results, the diversity orders of $zero$ and $ {\frac{{\mu _n^2K}}{{2{\Omega _n}}} + 1} $ are achieved for the nearby user with ipSIC/pSIC, while the diversity order of distant user is equal to ${\frac{{\mu _m^2 K}}{{2{\Omega _m}}}}$. The high signal-to-noise radio (SNR) slopes of ergodic rates for nearby user with pSIC and distant user are equal to $one$ and $zero$, respectively. In addition, the system throughput of STAR-RIS-NOMA is discussed in delay-limited and delay-tolerant modes. Simulation results are provided to verify the accuracy of the theoretical analyses and demonstrate that: 1) The outage probability of STAR-RIS-NOMA outperforms that of STAR-RIS assisted orthogonal multiple access (OMA) and conventional cooperative communication systems; 2) With the increasing of configurable elements $K$ and Rician factor $\kappa $, the STAR-RIS-NOMA networks are capable of attaining the enhanced performance; and 3) The ergodic rates of STAR-RIS-NOMA are superior to that of STAR-RIS-OMA.
Reconfigurable intelligent surface (RIS) is considered as an extraordinarily promising technology to solve the blockage problem of millimeter wave (mmWave) communications owing to its capable of establishing a reconfigurable wireless propagation. In this paper, we focus on a RIS-assisted mmWave communication network consisting of multiple base stations (BSs) serving a set of user equipments (UEs). Considering the BS-RIS-UE association problem which determines that the RIS should assist which BS and UEs, we joint optimize BS-RIS-UE association and passive beamforming at RIS to maximize the sum-rate of the system. To solve this intractable non-convex problem, we propose a soft actor-critic (SAC) deep reinforcement learning (DRL)-based joint beamforming and BS-RIS-UE association design algorithm, which can learn the best policy by interacting with the environment using less prior information and avoid falling into the local optimal solution by incorporating with the maximization of policy information entropy. The simulation results demonstrate that the proposed SAC-DRL algorithm can achieve significant performance gains compared with benchmark schemes.
This paper is concerned with a numerical solution to the scattering of a time-harmonic electromagnetic wave by a bounded and impenetrable obstacle in three dimensions. The electromagnetic wave propagation is modeled by a boundary value problem of Maxwell's equations in the exterior domain of the obstacle. Based on the Dirichlet-to-Neumann (DtN) operator, which is defined by an infinite series, an exact transparent boundary condition is introduced and the scattering problem is reduced equivalently into a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is developed to solve the discrete variational problem, where the DtN operator is truncated into a sum of finitely many terms. The a posteriori error estimate takes into account both the finite element approximation error and the truncation error of the DtN operator. The latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.
Dual-Functional Radar-Communication systems enhance the benefits of communications and radar sensing by jointly implementing these on the same hardware platform and using the common RF resources. An important and latest concern to be addressed in designing such Dual-Functional Radar-Communication systems is maximizing the energy-efficiency. In this paper, we consider a Dual-Functional Radar-Communication system performing simultaneous multi-user communications and radar sensing, and investigate the energy-efficiency behaviour with respect to active transmission elements. Specifically, we formulate a problem to find the optimal precoders and the number of active RF chains for maximum energy-efficiency by taking into consideration the power consumption of low-resolution Digital-to-Analog Converters on each RF chain under communications and radar performance constraints. We consider Rate-Splitting Multiple Access to perform multi-user communications with perfect and imperfect Channel State Information at Transmitter. The formulated non-convex optimization problem is solved by means of a novel algorithm. We demonstrate by numerical results that Rate Splitting Multiple Access achieves an improved energy-efficiency by employing a smaller number of RF chains compared to Space Division Multiple Access, owing to its generalized structure and improved interference management capabilities.
This work is associated with the use of parallel feedforward compensators (PFCs) for the problem of output synchronization over heterogeneous agents and the benefits this approach can provide. Specifically, it addresses the addition of stable PFCs on agents that interact with each other using diffusive couplings. The value in the application of such PFC is twofold. Firstly, it has been an issue that output synchronization among passivity-short systems requires global information for the design of controllers in the cases when initial conditions need to be taken into account, such as average consensus and distributed optimization. We show that a stable PFC can be designed to passivate a passivity-short system while its output asymptotically vanishes as its input tends to zero. As a result, output synchronization is achieved among these systems by fully distributed controls without altering the original consensus results. Secondly, in the literature of output synchronization over signed weighted graphs, it is generally required that the graph Laplacian be positive semidefinite, i.e., $L \geq 0$ for undirected graphs or $L + L^T \geq 0$ for balanced directed graphs. We show that the PFC serves as output feedback to the communication graph to enhance the robustness against negative weight edges. As a result, output synchronization is achieved over a signed weighted and balanced graph, even if the corresponding Laplacian is not positive semidefinite.
The highly directional beams applied in millimeter wave (mmWave) cellular networks make it possible to achieve near interference-free (NIF) transmission under judiciously designed space-time user scheduling, where the power of intra-/inter-cell interference between any two users is below a predefined threshold. In this paper, we investigate two aspects of the NIF space-time user scheduling in a multi-cell mmWave network with multi-RF-chain base stations. Firstly, given that each user has a requirement on the number of space-time resource elements, we study the NIF user scheduling problem to minimize the unfulfilled user requirements, so that the space-time resources can be utilized most efficiently and meanwhile all strong interferences are avoided. A near-optimal scheduling algorithm is proposed with performance close to the lower bound of unfulfilled requirements. Furthermore, we study the joint NIF user scheduling and power allocation problem to minimize the power consumption under the constraint of rate requirements. Based on our proposed NIF scheduling, an energy-efficient joint scheduling and power allocation scheme is designed with limited channel state information, which outperforms the existing independent set based schemes, and has near-optimal performance as well.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.
In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.