YOLO is a deep neural network (DNN) model presented for robust real-time object detection following the one-stage inference approach. It outperforms other real-time object detectors in terms of speed and accuracy by a wide margin. Nevertheless, since YOLO is developed upon a DNN backbone with numerous parameters, it will cause excessive memory load, thereby deploying it on memory-constrained devices is a severe challenge in practice. To overcome this limitation, model compression techniques, such as quantizing parameters to lower-precision values, can be adopted. As the most recent version of YOLO, YOLOv7 achieves such state-of-the-art performance in speed and accuracy in the range of 5 FPS to 160 FPS that it surpasses all former versions of YOLO and other existing models in this regard. So far, the robustness of several quantization schemes has been evaluated on older versions of YOLO. These methods may not necessarily yield similar results for YOLOv7 as it utilizes a different architecture. In this paper, we conduct in-depth research on the effectiveness of a variety of quantization schemes on the pre-trained weights of the state-of-the-art YOLOv7 model. Experimental results demonstrate that using 4-bit quantization coupled with the combination of different granularities results in ~3.92x and ~3.86x memory-saving for uniform and non-uniform quantization, respectively, with only 2.5% and 1% accuracy loss compared to the full-precision baseline model.
In cross-silo federated learning (FL), companies collaboratively train a shared global model without sharing heterogeneous data. Prior related work focused on algorithm development to tackle data heterogeneity. However, the dual problem of coopetition, i.e., FL collaboration and market competition, remains under-explored. This paper studies the FL coopetition using a dynamic two-period game model. In period 1, an incumbent company trains a local model and provides model-based services at a chosen price to users. In period 2, an entrant company enters, and both companies decide whether to engage in FL collaboration and then compete in selling model-based services at different prices to users. Analyzing the two-period game is challenging due to data heterogeneity, and that the incumbent's period one pricing has a temporal impact on coopetition in period 2, resulting in a non-concave problem. To address this issue, we decompose the problem into several concave sub-problems and develop an algorithm that achieves a global optimum. Numerical results on three public datasets show two interesting insights. First, FL training brings model performance gain as well as competition loss, and collaboration occurs only when the performance gain outweighs the loss. Second, data heterogeneity can incentivize the incumbent to limit market penetration in period 1 and promote price competition in period 2.
Error slice discovery associates structured patterns with model errors. Existing methods discover error slices by clustering the error-prone samples with similar patterns or assigning discrete attributes to each sample for post-hoc analysis. While these methods aim for interpretability and easier mitigation through reweighting or rebalancing, they may not capture the full complexity of error patterns due to incomplete or missing attributes. Contrary to the existing approach, this paper utilizes the reasoning capabilities of the Large Language Model (LLM) to analyze complex error patterns and generate testable hypotheses. This paper proposes LADDER: Language Driven slice Discovery and Error Rectification. It first projects the model's representation into a language-aligned feature space (\eg CLIP) to preserve semantics in the original model feature space. This ensures the accurate retrieval of sentences that highlight the model's errors. Next, the LLM utilizes the sentences and generates hypotheses to discover error slices. Finally, we mitigate the error by fine-tuning the classification head by creating a group-balanced dataset using the hypotheses. Our entire method does not require any attribute annotation, either explicitly or through external tagging models. We validate our method with \textbf{five} image classification datasets. The code is available\footnote{\url{//github.com/batmanlab/Ladder}}
Portrait Fidelity Generation is a prominent research area in generative models, with a primary focus on enhancing both controllability and fidelity. Current methods face challenges in generating high-fidelity portrait results when faces occupy a small portion of the image with a low resolution, especially in multi-person group photo settings. To tackle these issues, we propose a systematic solution called MagicID, based on a self-constructed million-level multi-modal dataset named IDZoom. MagicID consists of Multi-Mode Fusion training strategy (MMF) and DDIM Inversion based ID Restoration inference framework (DIIR). During training, MMF iteratively uses the skeleton and landmark modalities from IDZoom as conditional guidance. By introducing the Clone Face Tuning in training stage and Mask Guided Multi-ID Cross Attention (MGMICA) in inference stage, explicit constraints on face positional features are achieved for multi-ID group photo generation. The DIIR aims to address the issue of artifacts. The DDIM Inversion is used in conjunction with face landmarks, global and local face features to achieve face restoration while keeping the background unchanged. Additionally, DIIR is plug-and-play and can be applied to any diffusion-based portrait generation method. To validate the effectiveness of MagicID, we conducted extensive comparative and ablation experiments. The experimental results demonstrate that MagicID has significant advantages in both subjective and objective metrics, and achieves controllable generation in multi-person scenarios.
Egocentric networks, often visualized as node-link diagrams, portray the complex relationship (link) dynamics between an entity (node) and others. However, common analytics tasks are multifaceted, encompassing interactions among four key aspects: strength, function, structure, and content. Current node-link visualization designs may fall short, focusing narrowly on certain aspects and neglecting the holistic, dynamic nature of egocentric networks. To bridge this gap, we introduce SpreadLine, a novel visualization framework designed to enable the visual exploration of egocentric networks from these four aspects at the microscopic level. Leveraging the intuitive appeal of storyline visualizations, SpreadLine adopts a storyline-based design to represent entities and their evolving relationships. We further encode essential topological information in the layout and condense the contextual information in a metro map metaphor, allowing for a more engaging and effective way to explore temporal and attribute-based information. To guide our work, with a thorough review of pertinent literature, we have distilled a task taxonomy that addresses the analytical needs specific to egocentric network exploration. Acknowledging the diverse analytical requirements of users, SpreadLine offers customizable encodings to enable users to tailor the framework for their tasks. We demonstrate the efficacy and general applicability of SpreadLine through three diverse real-world case studies (disease surveillance, social media trends, and academic career evolution) and a usability study.
In the realm of real-world devices, centralized servers in Federated Learning (FL) present challenges including communication bottlenecks and susceptibility to a single point of failure. Additionally, contemporary devices inherently exhibit model and data heterogeneity. Existing work lacks a Decentralized FL (DFL) framework capable of accommodating such heterogeneity without imposing architectural restrictions or assuming the availability of public data. To address these issues, we propose a Decentralized Federated Mutual Learning (DFML) framework that is serverless, supports nonrestrictive heterogeneous models, and avoids reliance on public data. DFML effectively handles model and data heterogeneity through mutual learning, which distills knowledge between clients, and cyclically varying the amount of supervision and distillation signals. Extensive experimental results demonstrate consistent effectiveness of DFML in both convergence speed and global accuracy, outperforming prevalent baselines under various conditions. For example, with the CIFAR-100 dataset and 50 clients, DFML achieves a substantial increase of +17.20% and +19.95% in global accuracy under Independent and Identically Distributed (IID) and non-IID data shifts, respectively.
Preference datasets are essential for incorporating human preferences into pre-trained language models, playing a key role in the success of Reinforcement Learning from Human Feedback. However, these datasets often demonstrate conflicting alignment objectives, leading to increased vulnerability to jailbreak attacks and challenges in adapting downstream tasks to prioritize specific alignment objectives without negatively impacting others. In this work, we introduce a novel statistical metric, Alignment Dimension Conflict, to quantify the degree of conflict within preference datasets. We then present \texttt{Hummer} and its fine-grained variant, \texttt{Hummer-F}, as innovative pairwise preference datasets with reduced-conflict alignment objectives. \texttt{Hummer} is built based on UltraFeedback and is enhanced by AI feedback from GPT-4, marking as the first preference dataset aimed at reducing the competition between alignment objectives. Furthermore, we develop reward models, HummerRM and HummerRM-F, which employ a hybrid sampling approach to balance diverse alignment objectives effectively. This sampling method positions HummerRM as an ideal model for domain-specific further fine-tuning and reducing vulnerabilities to attacks.
Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.