亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-instance scenes are especially challenging for end-to-end visuomotor (image-to-control) learning algorithms. "Pipeline" visual servo control algorithms use separate detection, selection and servo stages, allowing algorithms to focus on a single object instance during servo control. End-to-end systems do not have separate detection and selection stages and need to address the visual ambiguities introduced by the presence of arbitrary number of visually identical or similar objects during servo control. However, end-to-end schemes avoid embedding errors from detection and selection stages in the servo control behaviour, are more dynamically robust to changing scenes, and are algorithmically simpler. In this paper, we present a real-time end-to-end visuomotor learning algorithm for multi-instance reaching. The proposed algorithm uses a monocular RGB image and the manipulator's joint angles as the input to a light-weight fully-convolutional network (FCN) to generate control candidates. A key innovation of the proposed method is identifying the optimal control candidate by regressing a control-Lyapunov function (cLf) value. The multi-instance capability emerges naturally from the stability analysis associated with the cLf formulation. We demonstrate the proposed algorithm effectively reaching and grasping objects from different categories on a table-top amid other instances and distractors from an over-the-shoulder monocular RGB camera. The network is able to run up to approximately 160 fps during inference on one GTX 1080 Ti GPU.

相關內容

Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model's ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.

Weakly-supervised grounded image captioning (WSGIC) aims to generate the caption and ground (localize) predicted object words in the input image without using bounding box supervision. Recent two-stage solutions mostly apply a bottom-up pipeline: (1) encode the input image into multiple region features using an object detector; (2) leverage region features for captioning and grounding. However, utilizing independent proposals produced by object detectors tends to make the subsequent grounded captioner overfitted in finding the correct object words, overlooking the relation between objects, and selecting incompatible proposal regions for grounding. To address these issues, we propose a one-stage weakly-supervised grounded captioner that directly takes the RGB image as input to perform captioning and grounding at the top-down image level. Specifically, we encode the image into visual token representations and propose a Recurrent Grounding Module (RGM) in the decoder to obtain precise Visual Language Attention Maps (VLAMs), which recognize the spatial locations of the objects. In addition, we explicitly inject a relation module into our one-stage framework to encourage relation understanding through multi-label classification. This relation semantics served as contextual information facilitating the prediction of relation and object words in the caption. We observe that the relation semantic not only assists the grounded captioner in generating a more accurate caption but also improves the grounding performance. We validate the effectiveness of our proposed method on two challenging datasets (Flick30k Entities captioning and MSCOCO captioning). The experimental results demonstrate that our method achieves state-of-the-art grounding performance.

Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.

Thompson sampling (TS) serves as a solution for addressing the exploitation-exploration dilemma in Bayesian optimization (BO). While it prioritizes exploration by randomly generating and maximizing sample paths of Gaussian process (GP) posteriors, TS weakly manages its exploitation by gathering information about the true objective function after each exploration is performed. In this study, we incorporate the epsilon-greedy ($\varepsilon$-greedy) policy, a well-established selection strategy in reinforcement learning, into TS to improve its exploitation. We first delineate two extremes of TS applied for BO, namely the generic TS and a sample-average TS. The former and latter promote exploration and exploitation, respectively. We then use $\varepsilon$-greedy policy to randomly switch between the two extremes. A small value of $\varepsilon \in (0,1)$ prioritizes exploitation, and vice versa. We empirically show that $\varepsilon$-greedy TS with an appropriate $\varepsilon$ is better than one of its two extremes and competes with the other.

Monocular 3D detection (M3D) aims for precise 3D object localization from a single-view image which usually involves labor-intensive annotation of 3D detection boxes. Weakly supervised M3D has recently been studied to obviate the 3D annotation process by leveraging many existing 2D annotations, but it often requires extra training data such as LiDAR point clouds or multi-view images which greatly degrades its applicability and usability in various applications. We propose SKD-WM3D, a weakly supervised monocular 3D detection framework that exploits depth information to achieve M3D with a single-view image exclusively without any 3D annotations or other training data. One key design in SKD-WM3D is a self-knowledge distillation framework, which transforms image features into 3D-like representations by fusing depth information and effectively mitigates the inherent depth ambiguity in monocular scenarios with little computational overhead in inference. In addition, we design an uncertainty-aware distillation loss and a gradient-targeted transfer modulation strategy which facilitate knowledge acquisition and knowledge transfer, respectively. Extensive experiments show that SKD-WM3D surpasses the state-of-the-art clearly and is even on par with many fully supervised methods.

Entity abstract summarization aims to generate a coherent description of a given entity based on a set of relevant Internet documents. Pretrained language models (PLMs) have achieved significant success in this task, but they may suffer from hallucinations, i.e. generating non-factual information about the entity. To address this issue, we decompose the summary into two components: Facts that represent the factual information about the given entity, which PLMs are prone to fabricate; and Template that comprises generic content with designated slots for facts, which PLMs can generate competently. Based on the facts-template decomposition, we propose SlotSum, an explainable framework for entity abstract summarization. SlotSum first creates the template and then predicts the fact for each template slot based on the input documents. Benefiting from our facts-template decomposition, SlotSum can easily locate errors and further rectify hallucinated predictions with external knowledge. We construct a new dataset WikiFactSum to evaluate the performance of SlotSum. Experimental results demonstrate that SlotSum could generate summaries that are significantly more factual with credible external knowledge.

We introduce two algorithms for computing tight guarantees on the probabilistic robustness of Bayesian Neural Networks (BNNs). Computing robustness guarantees for BNNs is a significantly more challenging task than verifying the robustness of standard Neural Networks (NNs) because it requires searching the parameters' space for safe weights. Moreover, tight and complete approaches for the verification of standard NNs, such as those based on Mixed-Integer Linear Programming (MILP), cannot be directly used for the verification of BNNs because of the polynomial terms resulting from the consecutive multiplication of variables encoding the weights. Our algorithms efficiently and effectively search the parameters' space for safe weights by using iterative expansion and the network's gradient and can be used with any verification algorithm of choice for BNNs. In addition to proving that our algorithms compute tighter bounds than the SoA, we also evaluate our algorithms against the SoA on standard benchmarks, such as MNIST and CIFAR10, showing that our algorithms compute bounds up to 40% tighter than the SoA.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司