亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid development of technology has introduced new formats of human-computer interaction, which have in turn produced many new forms of media and a whole new field of interactive multimedia. One of the major mediums that has grown in popularity since its early development is video games. For a long time, video games have been developed and distributed for the purpose of entertainment, however, in the late 2010s, researchers have taken an interest in the characteristics of games and how they can be used for different purposes. Video games allow a tight loop of action-reaction which provides fertile ground for many types of experiments which would be impossible or prohibitively difficult to perform in the physical world, and as such serve as strong virtual alternatives. A video game that is able to produce an immersive experience for the player in which the player believes that they are "actually there" in the game, and that the game is an extension of reality provides an alternate way to explore human behaviors and decision-making processes. Prospect theory questionnaires explore decision-making in hypothetical situations. In most cases, these experiments are done in controlled environments and rely on the respondent's imagination to reproduce the situation which is presented to them. Creating a virtual world with which the players can directly interact with and face tangible consequences of their decisions brings the hypothetical situations of the prospect theory questions closer to the respondent. If the players can interact with and manipulate the virtual world, then it is much easier for them to empathize with it and their character, and thus, the assumption is that the answers represent a more realistic image of the player's decision making.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Engineering · INFORMS · Better · state-of-the-art ·
2021 年 12 月 29 日

Search engines play an essential role in our daily lives. Nonetheless, they are also very crucial in enterprise domain to access documents from various information sources. Since traditional search systems index the documents mainly by looking at the frequency of the occurring words in these documents, they are barely able to support natural language search, but rather keyword search. It seems that keyword based search will not be sufficient for enterprise data which is growing extremely fast. Thus, enterprise search becomes increasingly critical in corporate domain. In this report, we present an overview of the state-of-the-art technologies in literature for three main purposes: i) to increase the retrieval performance of a search engine, ii) to deploy a search platform to a cloud environment, and iii) to select the best terms in expanding queries for achieving even a higher retrieval performance as well as to provide good query suggestions to its users for a better user experience.

Unsupervised reinforcement learning (RL) studies how to leverage environment statistics to learn useful behaviors without the cost of reward engineering. However, a central challenge in unsupervised RL is to extract behaviors that meaningfully affect the world and cover the range of possible outcomes, without getting distracted by inherently unpredictable, uncontrollable, and stochastic elements in the environment. To this end, we propose an unsupervised RL method designed for high-dimensional, stochastic environments based on an adversarial game between two policies (which we call Explore and Control) controlling a single body and competing over the amount of observation entropy the agent experiences. The Explore agent seeks out states that maximally surprise the Control agent, which in turn aims to minimize surprise, and thereby manipulate the environment to return to familiar and predictable states. The competition between these two policies drives them to seek out increasingly surprising parts of the environment while learning to gain mastery over them. We show formally that the resulting algorithm maximizes coverage of the underlying state in block MDPs with stochastic observations, providing theoretical backing to our hypothesis that this procedure avoids uncontrollable and stochastic distractions. Our experiments further demonstrate that Adversarial Surprise leads to the emergence of complex and meaningful skills, and outperforms state-of-the-art unsupervised reinforcement learning methods in terms of both exploration and zero-shot transfer to downstream tasks.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

The explanation dimension of Artificial Intelligence (AI) based system has been a hot topic for the past years. Different communities have raised concerns about the increasing presence of AI in people's everyday tasks and how it can affect people's lives. There is a lot of research addressing the interpretability and transparency concepts of explainable AI (XAI), which are usually related to algorithms and Machine Learning (ML) models. But in decision-making scenarios, people need more awareness of how AI works and its outcomes to build a relationship with that system. Decision-makers usually need to justify their decision to others in different domains. If that decision is somehow based on or influenced by an AI-system outcome, the explanation about how the AI reached that result is key to building trust between AI and humans in decision-making scenarios. In this position paper, we discuss the role of XAI in decision-making scenarios, our vision of Decision-Making with AI-system in the loop, and explore one case from the literature about how XAI can impact people justifying their decisions, considering the importance of building the human-AI relationship for those scenarios.

Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among different GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data science are illustrated. Finally, the future open research problems for GANs are pointed out.

Recently, the state-of-the-art models for image captioning have overtaken human performance based on the most popular metrics, such as BLEU, METEOR, ROUGE, and CIDEr. Does this mean we have solved the task of image captioning? The above metrics only measure the similarity of the generated caption to the human annotations, which reflects its accuracy. However, an image contains many concepts and multiple levels of detail, and thus there is a variety of captions that express different concepts and details that might be interesting for different humans. Therefore only evaluating accuracy is not sufficient for measuring the performance of captioning models --- the diversity of the generated captions should also be considered. In this paper, we proposed a new metric for measuring the diversity of image captions, which is derived from latent semantic analysis and kernelized to use CIDEr similarity. We conduct extensive experiments to re-evaluate recent captioning models in the context of both diversity and accuracy. We find that there is still a large gap between the model and human performance in terms of both accuracy and diversity and the models that have optimized accuracy (CIDEr) have low diversity. We also show that balancing the cross-entropy loss and CIDEr reward in reinforcement learning during training can effectively control the tradeoff between diversity and accuracy of the generated captions.

Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.

This paper describes the development of the Microsoft XiaoIce system, the most popular social chatbot in the world. XiaoIce is uniquely designed as an AI companion with an emotional connection to satisfy the human need for communication, affection, and social belonging. We take into account both intelligent quotient (IQ) and emotional quotient (EQ) in system design, cast human-machine social chat as decision-making over Markov Decision Processes (MDPs), and optimize XiaoIce for long-term user engagement, measured in expected Conversation-turns Per Session (CPS). We detail the system architecture and key components including dialogue manager, core chat, skills, and an empathetic computing module. We show how XiaoIce dynamically recognizes human feelings and states, understands user intents, and responds to user needs throughout long conversations. Since the release in 2014, XiaoIce has communicated with over 660 million users and succeeded in establishing long-term relationships with many of them. Analysis of large-scale online logs shows that XiaoIce has achieved an average CPS of 23, which is significantly higher than that of other chatbots and even human conversations.

Learning robot objective functions from human input has become increasingly important, but state-of-the-art techniques assume that the human's desired objective lies within the robot's hypothesis space. When this is not true, even methods that keep track of uncertainty over the objective fail because they reason about which hypothesis might be correct, and not whether any of the hypotheses are correct. We focus specifically on learning from physical human corrections during the robot's task execution, where not having a rich enough hypothesis space leads to the robot updating its objective in ways that the person did not actually intend. We observe that such corrections appear irrelevant to the robot, because they are not the best way of achieving any of the candidate objectives. Instead of naively trusting and learning from every human interaction, we propose robots learn conservatively by reasoning in real time about how relevant the human's correction is for the robot's hypothesis space. We test our inference method in an experiment with human interaction data, and demonstrate that this alleviates unintended learning in an in-person user study with a 7DoF robot manipulator.

Autonomous urban driving navigation with complex multi-agent dynamics is under-explored due to the difficulty of learning an optimal driving policy. The traditional modular pipeline heavily relies on hand-designed rules and the pre-processing perception system while the supervised learning-based models are limited by the accessibility of extensive human experience. We present a general and principled Controllable Imitative Reinforcement Learning (CIRL) approach which successfully makes the driving agent achieve higher success rates based on only vision inputs in a high-fidelity car simulator. To alleviate the low exploration efficiency for large continuous action space that often prohibits the use of classical RL on challenging real tasks, our CIRL explores over a reasonably constrained action space guided by encoded experiences that imitate human demonstrations, building upon Deep Deterministic Policy Gradient (DDPG). Moreover, we propose to specialize adaptive policies and steering-angle reward designs for different control signals (i.e. follow, straight, turn right, turn left) based on the shared representations to improve the model capability in tackling with diverse cases. Extensive experiments on CARLA driving benchmark demonstrate that CIRL substantially outperforms all previous methods in terms of the percentage of successfully completed episodes on a variety of goal-directed driving tasks. We also show its superior generalization capability in unseen environments. To our knowledge, this is the first successful case of the learned driving policy through reinforcement learning in the high-fidelity simulator, which performs better-than supervised imitation learning.

北京阿比特科技有限公司