亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Doubly robust learning offers a robust framework for causal inference from observational data by integrating propensity score and outcome modeling. Despite its theoretical appeal, practical adoption remains limited due to perceived complexity and inaccessible software. This tutorial aims to demystify doubly robust methods and demonstrate their application using the EconML package. We provide an introduction to causal inference, discuss the principles of outcome modeling and propensity scores, and illustrate the doubly robust approach through simulated case studies. By simplifying the methodology and offering practical coding examples, we intend to make doubly robust learning accessible to researchers and practitioners in data science and statistics.

相關內容

We develop a nonparametric Bayesian modeling framework for clustered ordinal responses in developmental toxicity studies, which typically exhibit extensive heterogeneity. The primary focus of these studies is to examine the dose-response relationship, which is depicted by the (conditional) probability of an endpoint across the dose (toxin) levels. Standard parametric approaches, limited in terms of the response distribution and/or the dose-response relationship, hinder reliable uncertainty quantification in this context. We propose nonparametric mixture models that are built from dose-dependent stick-breaking process priors, leveraging the continuation-ratio logits representation of the multinomial distribution to formulate the mixture kernel. We further elaborate the modeling approach, amplifying the mixture models with an overdispersed kernel which offers enhanced control of variability. We conduct a simulation study to demonstrate the benefits of both the discrete nonparametric mixing structure and the overdispersed kernel in delivering coherent uncertainty quantification. Further illustration is provided with different forms of risk assessment, using data from a toxicity experiment on the effects of ethylene glycol.

Recently, Optimal Transport has been proposed as a probabilistic framework in Machine Learning for comparing and manipulating probability distributions. This is rooted in its rich history and theory, and has offered new solutions to different problems in machine learning, such as generative modeling and transfer learning. In this survey we explore contributions of Optimal Transport for Machine Learning over the period 2012 -- 2023, focusing on four sub-fields of Machine Learning: supervised, unsupervised, transfer and reinforcement learning. We further highlight the recent development in computational Optimal Transport and its extensions, such as partial, unbalanced, Gromov and Neural Optimal Transport, and its interplay with Machine Learning practice.

In a real federated learning (FL) system, communication overhead for passing model parameters between the clients and the parameter server (PS) is often a bottleneck. Hierarchical federated learning (HFL) that poses multiple edge servers (ESs) between clients and the PS can partially alleviate communication pressure but still needs the aggregation of model parameters from multiple ESs at the PS. To further reduce communication overhead, we bring sequential FL (SFL) into HFL for the first time, which removes the central PS and enables the model training to be completed only through passing the global model between two adjacent ESs for each iteration, and propose a novel algorithm adaptive to such a combinational framework, referred to as Fed-CHS. Convergence results are derived for strongly convex and non-convex loss functions under various data heterogeneity setups, which show comparable convergence performance with the algorithms for HFL or SFL solely. Experimental results provide evidence of the superiority of our proposed Fed-CHS on both communication overhead saving and test accuracy over baseline methods.

When optimizing problems with uncertain parameter values in a linear objective, decision-focused learning enables end-to-end learning of these values. We are interested in a stochastic scheduling problem, in which processing times are uncertain, which brings uncertain values in the constraints, and thus repair of an initial schedule may be needed. Historical realizations of the stochastic processing times are available. We show how existing decision-focused learning techniques based on stochastic smoothing can be adapted to this scheduling problem. We include an extensive experimental evaluation to investigate in which situations decision-focused learning outperforms the state of the art for such situations: scenario-based stochastic optimization.

Within data-driven artificial intelligence (AI) systems for industrial applications, ensuring the reliability of the incoming data streams is an integral part of trustworthy decision-making. An approach to assess data validity is data quality scoring, which assigns a score to each data point or stream based on various quality dimensions. However, certain dimensions exhibit dynamic qualities, which require adaptation on the basis of the system's current conditions. Existing methods often overlook this aspect, making them inefficient in dynamic production environments. In this paper, we introduce the Adaptive Data Quality Scoring Operations Framework, a novel framework developed to address the challenges posed by dynamic quality dimensions in industrial data streams. The framework introduces an innovative approach by integrating a dynamic change detector mechanism that actively monitors and adapts to changes in data quality, ensuring the relevance of quality scores. We evaluate the proposed framework performance in a real-world industrial use case. The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.

Distributed learning offers a practical solution for the integrative analysis of multi-source datasets, especially under privacy or communication constraints. However, addressing prospective distributional heterogeneity and ensuring communication efficiency pose significant challenges on distributed statistical analysis. In this article, we focus on integrative estimation of distributed heterogeneous precision matrices, a crucial task related to joint precision matrix estimation where computation-efficient algorithms and statistical optimality theories are still underdeveloped. To tackle these challenges, we introduce a novel HEterogeneity-adjusted Aggregating and Thresholding (HEAT) approach for distributed integrative estimation. HEAT is designed to be both communication- and computation-efficient, and we demonstrate its statistical optimality by establishing the convergence rates and the corresponding minimax lower bounds under various integrative losses. To enhance the optimality of HEAT, we further propose an iterative HEAT (IteHEAT) approach. By iteratively refining the higher-order errors of HEAT estimators through multi-round communications, IteHEAT achieves geometric contraction rates of convergence. Extensive simulations and real data applications validate the numerical performance of HEAT and IteHEAT methods.

This paper presents the first study to explore the potential of parameter quantization for multimodal large language models to alleviate the significant resource constraint encountered during vision-language instruction tuning. We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW. This method is grounded in two key innovations: (1) The learning of group-wise scale factors for quantized LLM weights to mitigate the quantization error arising from activation outliers and achieve more effective vision-language instruction tuning; (2) The implementation of a multimodal warmup that progressively integrates linguistic and multimodal training samples, thereby preventing overfitting of the quantized model to multimodal data while ensuring stable adaptation of multimodal large language models to downstream vision-language tasks. Extensive experiments demonstrate that models quantized by QSLAW perform on par with, or even surpass, their full-precision counterparts, while facilitating up to 1.4 times reduction in VL tuning time and GPU consumption. Our code is released at //github.com/xjjxmu/QSLAW.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司