亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The key relay protocol (KRP) plays an important role in improving the performance and the security of quantum key distribution (QKD) networks. On the other hand, there is also an existing research field called secure network coding (SNC), which has similar goal and structure. We here analyze differences and similarities between the KRP and SNC rigorously. We found, rather surprisingly, that there is a definite gap in security between the KRP and SNC; that is, certain KRPs achieve better security than any SNC schemes on the same graph. We also found that this gap can be closed if we generalize the notion of SNC by adding free public channels; that is, KRPs are equivalent to SNC schemes augmented with free public channels.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Value approximation using deep neural networks is at the heart of off-policy deep reinforcement learning, and is often the primary module that provides learning signals to the rest of the algorithm. While multi-layer perceptron networks are universal function approximators, recent works in neural kernel regression suggest the presence of a spectral bias, where fitting high-frequency components of the value function requires exponentially more gradient update steps than the low-frequency ones. In this work, we re-examine off-policy reinforcement learning through the lens of kernel regression and propose to overcome such bias via a composite neural tangent kernel. With just a single line-change, our approach, the Fourier feature networks (FFN) produce state-of-the-art performance on challenging continuous control domains with only a fraction of the compute. Faster convergence and better off-policy stability also make it possible to remove the target network without suffering catastrophic divergences, which further reduces TD}(0)'s estimation bias on a few tasks.

Performance assessment and optimization for networks jointly performing caching, computing, and communication (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while their theoretical understanding and characterization has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, assuming the user requests for different tasks following a Zipf distribution, we derive the analytical expression for the optimal caching policy. Based on this, we next derive the closed-form expression for the optimum outage probability as a function of delay and other network parameters for the case that the Zipf parameter is smaller than 1. Then, for the case that the Zipf parameter is larger than 1, we derive the closed-form expressions for upper and lower bounds of the optimum outage probability. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights.

Relatively little is known about mobile phone use in a Supply Chain Management (SCM) context, especially in the Bangladeshi Ready-Made Garment (RMG) industry. RMG is a very important industry for the Bangladeshi economy but is criticized for long product supply times due to poor SCM. RMG requires obtaining real-time information and enhanced dynamic control, through utilizing information sharing and connecting stakeholders in garment manufacturing. However, a lack of IT support in the Bangladeshi RMG sector, the high price of computers and the low level of adoption of the computer-based internet are obstacles to providing sophisticated computer-aided SCM. Alternatively, the explosive adoption of mobile phones and continuous improvement of this technology is an opportunity to provide mobile-based SCM for the RMG sector. This research presents a mobile phone-based SCM framework for the Bangladeshi RMG sector. The proposed framework shows that mobile phone-based SCM can positively impact communication, information exchange, information retrieval and flow, coordination and management, which represent the main processes of effective SCM. However, to capitalize on these benefits, it is also important to discover the critical success factors and barriers to mobile SCM systems.

Industrial Internet-of-Things (IIoT) is a powerful IoT application which remodels the growth of industries by ensuring transparent communication among various entities such as hubs, manufacturing places and packaging units. Introducing data science techniques within the IIoT improves the ability to analyze the collected data in a more efficient manner, which current IIoT architectures lack due to their distributed nature. From a security perspective, network anomalies/attackers pose high security risk in IIoT. In this paper, we have addressed this problem, where a coordinator IoT device is elected to compute the trust of IoT devices to prevent the malicious devices to be part of network. Further, the transparency of the data is ensured by integrating a blockchain-based data model. The performance of the proposed framework is validated extensively and rigorously via MATLAB against various security metrics such as attack strength, message alteration, and probability of false authentication. The simulation results suggest that the proposed solution increases IIoT network security by efficiently detecting malicious attacks in the network.

The spectrum of mutations in a collection of cancer genomes can be described by a mixture of a few mutational signatures. The mutational signatures can be found using non-negative matrix factorization (NMF). To extract the mutational signatures we have to assume a distribution for the observed mutational counts and a number of mutational signatures. In most applications, the mutational counts are assumed to be Poisson distributed, but they are often overdispersed, and thus the Negative Binomial distribution is more appropriate. We demonstrate using a simulation study that Negative Binomial NMF requires fewer signatures than Poisson NMF to fit the data and we propose a Negative Binomial NMF with a patient specific overdispersion parameter to capture the variation across patients. We also introduce a robust model selection procedure inspired by cross-validation to determine the number of signatures. Furthermore we study the influence of the distributional assumption in relation to two classical model selection procedures: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). In the presence of overdispersion we show that our model selection procedure is more robust at determining the correct number of signatures than state-of-the-art methods, which are overestimating the number of signatures. We apply our proposed analysis on a wide range of simulated data and on a data set from breast cancer patients. The code for our algorithms and analysis is available in the R package SigMoS and can be found at //github.com/MartaPelizzola/SigMoS.

Transfer learning (TL) is becoming a powerful tool in scientific applications of neural networks (NNs), such as weather/climate prediction and turbulence modeling. TL enables out-of-distribution generalization (e.g., extrapolation in parameters) and effective blending of disparate training sets (e.g., simulations and observations). In TL, selected layers of a NN, already trained for a base system, are re-trained using a small dataset from a target system. For effective TL, we need to know 1) what are the best layers to re-train? and 2) what physics are learned during TL? Here, we present novel analyses and a new framework to address (1)-(2) for a broad range of multi-scale, nonlinear systems. Our approach combines spectral analyses of the systems' data with spectral analyses of convolutional NN's activations and kernels, explaining the inner-workings of TL in terms of the system's nonlinear physics. Using subgrid-scale modeling of several setups of 2D turbulence as test cases, we show that the learned kernels are combinations of low-, band-, and high-pass filters, and that TL learns new filters whose nature is consistent with the spectral differences of base and target systems. We also find the shallowest layers are the best to re-train in these cases, which is against the common wisdom guiding TL in machine learning literature. Our framework identifies the best layer(s) to re-train beforehand, based on physics and NN theory. Together, these analyses explain the physics learned in TL and provide a framework to guide TL for wide-ranging applications in science and engineering, such as climate change modeling.

The notion of comparison between system runs is fundamental in formal verification. This concept is implicitly present in the verification of qualitative systems, and is more pronounced in the verification of quantitative systems. In this work, we identify a novel mode of comparison in quantitative systems: the online comparison of the aggregate values of two sequences of quantitative weights. This notion is embodied by {\em comparator automata} ({\em comparators}, in short), a new class of automata that read two infinite sequences of weights synchronously and relate their aggregate values. We show that {aggregate functions} that can be represented with B\"uchi automaton result in comparators that are finite-state and accept by the B\"uchi condition as well. Such {\em $\omega$-regular comparators} further lead to generic algorithms for a number of well-studied problems, including the quantitative inclusion and winning strategies in quantitative graph games with incomplete information, as well as related non-decision problems, such as obtaining a finite representation of all counterexamples in the quantitative inclusion problem. We study comparators for two aggregate functions: discounted-sum and limit-average. We prove that the discounted-sum comparator is $\omega$-regular iff the discount-factor is an integer. Not every aggregate function, however, has an $\omega$-regular comparator. Specifically, we show that the language of sequence-pairs for which limit-average aggregates exist is neither $\omega$-regular nor $\omega$-context-free. Given this result, we introduce the notion of {\em prefix-average} as a relaxation of limit-average aggregation, and show that it admits $\omega$-context-free comparators.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司