High-index saddle dynamics provides an effective means to compute the any-index saddle points and construct the solution landscape. In this paper we prove the optimal-order error estimates for Euler discretization of high-index saddle dynamics with respect to the time step size, which remains untreated in the literature. We overcome the main difficulties that lie in the strong nonlinearity of the saddle dynamics and the orthonormalization procedure in the numerical scheme that is uncommon in standard discretization of differential equations. The derived methods are further extended to study the generalized high-index saddle dynamics for non-gradient systems and provide theoretical support for the accuracy of numerical implementations.
We consider a class of statistical estimation problems in which we are given a random data matrix ${\boldsymbol X}\in {\mathbb R}^{n\times d}$ (and possibly some labels ${\boldsymbol y}\in{\mathbb R}^n$) and would like to estimate a coefficient vector ${\boldsymbol \theta}\in{\mathbb R}^d$ (or possibly a constant number of such vectors). Special cases include low-rank matrix estimation and regularized estimation in generalized linear models (e.g., sparse regression). First order methods proceed by iteratively multiplying current estimates by ${\boldsymbol X}$ or its transpose. Examples include gradient descent or its accelerated variants. Celentano, Montanari, Wu proved that for any constant number of iterations (matrix vector multiplications), the optimal first order algorithm is a specific approximate message passing algorithm (known as `Bayes AMP'). The error of this estimator can be characterized in the high-dimensional asymptotics $n,d\to\infty$, $n/d\to\delta$, and provides a lower bound to the estimation error of any first order algorithm. Here we present a simpler proof of the same result, and generalize it to broader classes of data distributions and of first order algorithms, including algorithms with non-separable nonlinearities. Most importantly, the new proof technique does not require to construct an equivalent tree-structured estimation problem, and is therefore susceptible of a broader range of applications.
Estimating and reacting to external disturbances is of fundamental importance for robust control of quadrotors. Existing estimators typically require significant tuning or training with a large amount of data, including the ground truth, to achieve satisfactory performance. This paper proposes a data-efficient differentiable moving horizon estimation (DMHE) algorithm that can automatically tune the MHE parameters online and also adapt to different scenarios. We achieve this by deriving the analytical gradient of the estimated trajectory from MHE with respect to the tuning parameters, enabling end-to-end learning for auto-tuning. Most interestingly, we show that the gradient can be calculated efficiently from a Kalman filter in a recursive form. Moreover, we develop a model-based policy gradient algorithm to learn the parameters directly from the trajectory tracking errors without the need for the ground truth. The proposed DMHE can be further embedded as a layer with other neural networks for joint optimization. Finally, we demonstrate the effectiveness of the proposed method via both simulation and experiments on quadrotors, where challenging scenarios such as sudden payload change and flying in downwash are examined.
In backward error analysis, an approximate solution to an equation is compared to the exact solution to a nearby "modified" equation. In numerical ordinary differential equations, the two agree up to any power of the step size. If the differential equation has a geometric property then the modified equation may share it. In this way, known properties of differential equations can be applied to the approximation. But for partial differential equations, the known modified equations are of higher order, limiting applicability of the theory. Therefore, we study symmetric solutions of discretized partial differential equations that arise from a discrete variational principle. These symmetric solutions obey infinite-dimensional functional equations. We show that these equations admit second-order modified equations which are Hamiltonian and also possess first-order Lagrangians in modified coordinates. The modified equation and its associated structures are computed explicitly for the case of rotating travelling waves in the nonlinear wave equation.
We deal with approximation of solutions of delay differential equations (DDEs) via the classical Euler algorithm. We investigate the pointwise error of the Euler scheme under nonstandard assumptions imposed on the right-hand side function $f$. Namely, we assume that $f$ is globally of at most linear growth, satisfies globally one-side Lipschitz condition but it is only locally H\"older continuous. We provide a detailed error analysis of the Euler algorithm under such nonstandard regularity conditions. Moreover, we report results of numerical experiments.
Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix--Raviart finite element require the existence of a Lipschitz continuous dual solution, which is not generally given. We provide analytic proofs showing that the Lipschitz continuity of a dual solution is not necessary, in general. Using the Lipschitz truncation technique, we, in addition, derive error estimates that depend directly on the Sobolev regularity of a given dual solution.
In the $(1+\varepsilon,r)$-approximate near-neighbor problem for curves (ANNC) under some distance measure $\delta$, the goal is to construct a data structure for a given set $\mathcal{C}$ of curves that supports approximate near-neighbor queries: Given a query curve $Q$, if there exists a curve $C\in\mathcal{C}$ such that $\delta(Q,C)\le r$, then return a curve $C'\in\mathcal{C}$ with $\delta(Q,C')\le(1+\varepsilon)r$. There exists an efficient reduction from the $(1+\varepsilon)$-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve $C\in\mathcal{C}$ with $\delta(Q,C)\le(1+\varepsilon)\cdot\delta(Q,C^*)$, where $C^*$ is the curve of $\mathcal{C}$ closest to $Q$. Given a set $\mathcal{C}$ of $n$ curves, each consisting of $m$ points in $d$ dimensions, we construct a data structure for ANNC that uses $n\cdot O(\frac{1}{\varepsilon})^{md}$ storage space and has $O(md)$ query time (for a query curve of length $m$), where the similarity between two curves is their discrete Fr\'echet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is $k \ll m$, and obtain essentially the same storage and query bounds as above, except that $m$ is replaced by $k$. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.
Analyzing large-scale data from simulations of turbulent flows is memory intensive, requiring significant resources. This major challenge highlights the need for data compression techniques. In this study, we apply a physics-informed Deep Learning technique based on vector quantization to generate a discrete, low-dimensional representation of data from simulations of three-dimensional turbulent flows. The deep learning framework is composed of convolutional layers and incorporates physical constraints on the flow, such as preserving incompressibility and global statistical characteristics of the velocity gradients. The accuracy of the model is assessed using statistical, comparison-based similarity and physics-based metrics. The training data set is produced from Direct Numerical Simulation of an incompressible, statistically stationary, isotropic turbulent flow. The performance of this lossy data compression scheme is evaluated not only with unseen data from the stationary, isotropic turbulent flow, but also with data from decaying isotropic turbulence, and a Taylor-Green vortex flow. Defining the compression ratio (CR) as the ratio of original data size to the compressed one, the results show that our model based on vector quantization can offer CR $=85$ with a mean square error (MSE) of $O(10^{-3})$, and predictions that faithfully reproduce the statistics of the flow, except at the very smallest scales where there is some loss. Compared to the recent study based on a conventional autoencoder where compression is performed in a continuous space, our model improves the CR by more than $30$ percent, and reduces the MSE by an order of magnitude. Our compression model is an attractive solution for situations where fast, high quality and low-overhead encoding and decoding of large data are required.
In this study we propose a hybrid estimation of distribution algorithm (HEDA) to solve the joint stratification and sample allocation problem. This is a complex problem in which each the quality of each stratification from the set of all possible stratifications is measured its optimal sample allocation. EDAs are stochastic black-box optimization algorithms which can be used to estimate, build and sample probability models in the search for an optimal stratification. In this paper we enhance the exploitation properties of the EDA by adding a simulated annealing algorithm to make it a hybrid EDA. Results of empirical comparisons for atomic and continuous strata show that the HEDA attains the bests results found so far when compared to benchmark tests on the same data using a grouping genetic algorithm, simulated annealing algorithm or hill-climbing algorithm. However, the execution times and total execution are, in general, higher for the HEDA.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.