亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix--Raviart finite element require the existence of a Lipschitz continuous dual solution, which is not generally given. We provide analytic proofs showing that the Lipschitz continuity of a dual solution is not necessary, in general. Using the Lipschitz truncation technique, we, in addition, derive error estimates that depend directly on the Sobolev regularity of a given dual solution.

相關內容

Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.

In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.

We introduce a filtering technique for Discontinuous Galerkin approximations of hyperbolic problems. Following an approach already proposed for the Hamilton-Jacobi equations by other authors, we aim at reducing the spurious oscillations that arise in presence of discontinuities when high order spatial discretizations are employed. This goal is achieved using a filter function that keeps the high order scheme when the solution is regular and switches to a monotone low order approximation if it is not. The method has been implemented in the framework of the $deal.II$ numerical library, whose mesh adaptation capabilities are also used to reduce the region in which the low order approximation is used. A number of numerical experiments demonstrate the potential of the proposed filtering technique.

This paper focuses on stochastic saddle point problems with decision-dependent distributions. These are problems whose objective is the expected value of a stochastic payoff function, where random variables are drawn from a distribution induced by a distributional map. For general distributional maps, the problem of finding saddle points is in general computationally burdensome, even if the distribution is known. To enable a tractable solution approach, we introduce the notion of equilibrium points -- which are saddle points for the stationary stochastic minimax problem that they induce -- and provide conditions for their existence and uniqueness. We demonstrate that the distance between the two solution types is bounded provided that the objective has a strongly-convex-strongly-concave payoff and a Lipschitz continuous distributional map. We develop deterministic and stochastic primal-dual algorithms and demonstrate their convergence to the equilibrium point. In particular, by modeling errors emerging from a stochastic gradient estimator as sub-Weibull random variables, we provide error bounds in expectation and in high probability that hold for each iteration. Moreover, we show convergence to a neighborhood almost surely. Finally, we investigate a condition on the distributional map -- which we call opposing mixture dominance -- that ensures that the objective is strongly-convex-strongly-concave. We tailor the convergence results for the primal-dual algorithms to this opposing mixture dominance setup.

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.

Convection-diffusion-reaction equations model the conservation of scalar quantities. From the analytic point of view, solution of these equations satisfy under certain conditions maximum principles, which represent physical bounds of the solution. That the same bounds are respected by numerical approximations of the solution is often of utmost importance in practice. The mathematical formulation of this property, which contributes to the physical consistency of a method, is called Discrete Maximum Principle (DMP). In many applications, convection dominates diffusion by several orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP in this convection-dominated regime. In fact, in this case, it turns out to be a challenging problem to construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute accurate solutions. This paper presents a survey on finite element methods, with a main focus on the convection-dominated regime, that satisfy a local or a global DMP. The concepts of the underlying numerical analysis are discussed. The survey reveals that for the steady-state problem there are only a few discretizations, all of them nonlinear, that at the same time satisfy the DMP and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most of these discretizations have been developed in recent years, showing the enormous progress that has been achieved lately. Methods based on algebraic stabilization, nonlinear and linear ones, are currently as well the only finite element methods that combine the satisfaction of the global DMP and accurate numerical results for the evolutionary equations in the convection-dominated situation.

One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.

We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function $f(x)$ with condition number $\kappa$ subject to $x$ being an $s$-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT which also finds a solution of sparsity $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value $f(x^*)$ or the optimal sparsity level $s$. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an $\ell_2$ regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.

北京阿比特科技有限公司